elasticsearch的两种初始化方式以及matchQuery,termQuery, multiMatchQuery区别与实现

方式一:使用TransportClient方式:

public ESConfiguration()
    {
        if(EnvUtils.isOnlineEnv())
        {
            hostName = "xxxxx1";
            hostName2 = "xxxx2";
            hostName3 = "xxxx3";
            port = "9300";
            clusterName = "yyyy";
        }else {
            hostName = "vvvvv1";
            hostName2 = "vvvv2";
            hostName3 = "vvvv3";
            port = "9300";
            clusterName = "zzzz";
        }
        createTransportClient();
    }

    public void createTransportClient()
    {
        try {
            // 配置信息 -- 配置 集群的名字 + 连接池的个数
            Settings esSetting = Settings.builder().put("cluster.name", clusterName)       //设置连接的集群名称
                    .put("client.transport.sniff", false)                       //增加嗅探机制,找到ES集群
                    .put("thread_pool.search.size", Integer.parseInt(poolSize))          // 增加线程池个数,暂时设为5
                    .build();

            client = new PreBuiltTransportClient(esSetting);
            //配置host 和 端口port
            InetSocketTransportAddress inetSocketTransportAddress = new InetSocketTransportAddress(InetAddress.getByName(hostName), Integer.valueOf(port));
              InetSocketTransportAddress inetSocketTransportAddress2 = new InetSocketTransportAddress(InetAddress.getByName(hostName2), Integer.valueOf(port));
              InetSocketTransportAddress inetSocketTransportAddress3 = new InetSocketTransportAddress(InetAddress.getByName(hostName3), Integer.valueOf(port));
            client.addTransportAddresses(inetSocketTransportAddress).addTransportAddresses(inetSocketTransportAddress2).addTransportAddresses(inetSocketTransportAddress3);

        } catch (Exception e) {
            logger.error("elasticsearch TransportClient create error!!!", e);
        }
    }

    public TransportClient getInstance() {

        return client;
    }

 

方式二:使用 RestHighLevelClient + http 方式

    /**
     * es集群地址
     */
    private String servers = "xxxx1,xxxx2,xxxx3";

    /**
     * 端口
     */
    private int port = 9301;

    private int size = 3;

    private String scheme = "http";

    private RestHighLevelClient restHighLevelClient;



    @PostConstruct
    public void init() {
        logger.info("init Es Client...");
        RestClientBuilder builder = getRestClientBuilder();
        restHighLevelClient = new RestHighLevelClient(builder);
        logger.info("init Es Client complete...");
    }

    public RestClientBuilder getRestClientBuilder() {
        String[] address = StringUtils.split(servers, ",");
        if (ArrayUtils.isNotEmpty(address) && address.length == size) {
            return RestClient.builder(new HttpHost(address[0], port, scheme), new HttpHost(address[1], port, scheme), new HttpHost(address[2], port, scheme));
        }
        return null;
    }


    public RestHighLevelClient getInstance() {
        if (restHighLevelClient == null) {
            init();
        }
        return restHighLevelClient;
    }

 

使用highlevelClient,使用bulk方式插入数据:

    public String executeBulkDocInsert(List jsonList)
    {
        try {

            BulkRequest request = new BulkRequest();

            for(Map crashInfo : jsonList) {
                IndexRequest indexRequest = new IndexRequest("crash_bulk_index_2020-01-01", "crash", "11").source(crashInfo);
              //UpdateRequest updateRequest = new UpdateRequest("twitter", "_doc", "11").doc(new IndexRequest("crash_bulk_index_2020-01-02", "_type", "11").source(jsonStr));
              request.add(indexRequest);
              //request.add(updateRequest);
            }

            request.timeout(TimeValue.timeValueMinutes(2));
            request.setRefreshPolicy(WriteRequest.RefreshPolicy.WAIT_UNTIL);

            BulkResponse bulkResponse = restHighLevelClient.bulk(request, RequestOptions.DEFAULT);

            for (BulkItemResponse bulkItemResponse : bulkResponse)
            {
                if (bulkItemResponse.getFailure() != null) {
                    BulkItemResponse.Failure failure = bulkItemResponse.getFailure();
                    System.out.println(failure.getCause());
                    if(failure.getStatus() == RestStatus.BAD_REQUEST) {
                        System.out.println("id=" + bulkItemResponse.getId() + "为非法的请求!");
                        continue;
                    }
                }

                DocWriteResponse itemResponse = bulkItemResponse.getResponse();

                if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.INDEX || bulkItemResponse.getOpType() == DocWriteRequest.OpType.CREATE) {
                    if(bulkItemResponse.getFailure() != null && bulkItemResponse.getFailure().getStatus() == RestStatus.CONFLICT) {
                        System.out.println("id=" + bulkItemResponse.getId() + "与现在文档冲突");
                        continue;
                    }
                    IndexResponse indexResponse = (IndexResponse) itemResponse;
                    System.out.println("id=" + indexResponse.getId() + "的文档创建成功");
                    System.out.println("id=" + indexResponse.getId() + "文档操作类型:" + itemResponse.getResult());
                } else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.UPDATE) {
                    UpdateResponse updateResponse = (UpdateResponse) itemResponse;
                    System.out.println("id=" + updateResponse.getId() + "的文档更新成功");
                    System.out.println("id=" + updateResponse.getId() +"文档内容为:" + updateResponse.getGetResult().sourceAsString());
                } else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.DELETE) {
                    DeleteResponse deleteResponse = (DeleteResponse) itemResponse;
                    if (deleteResponse.getResult() == DocWriteResponse.Result.NOT_FOUND) {
                        System.out.println("id=" + deleteResponse.getId() + "的文档未找到,未执行删除!");
                    }else {
                        System.out.println("id=" + deleteResponse.getId() + "的文档删除成功");
                    }
                }
            }

        } catch (Exception e) {
            e.printStackTrace();
            return "bulk insert into index failed";
        } finally {
        }

        return null;
    }

************************************************************ matchQuery,termQuery, multiMatchQuery区别与实现 ************************************************************

区别1:matchPhraseQuery和matchQuery等的区别,在使用matchQuery等时,在执行查询时,搜索的词会被分词器分词,而使用matchPhraseQuery时,

不会被分词器分词,而是直接以一个短语的形式查询,而如果你在创建索引所使用的field的value中没有这么一个短语(顺序无差,且连接在一起),那么将查询不出任何结果。

区别2:

matchQuery:会将搜索词分词,再与目标查询字段进行匹配,若分词中的任意一个词与目标字段匹配上,则可查询到。

termQuery:不会对搜索词进行分词处理,而是作为一个整体与目标字段进行匹配,若完全匹配,则可查询到。

 

matchQuery多条件查询模板:

    public BootstrapTablePaginationVo searchMsgByParam(BasicCrashInfoSearchParam param) throws Exception {

        /**处理和检查入参**/
        String index = param.getIndex();
        String type = param.getType();
        String filed = param.getField();
        String keyWord = param.getKeyWord();

        if(index == null || filed == null || keyWord == null)
        {
            LOG.info("index、field、keyword 存在数据为null,无法正常查询!");
            return null;
        }


        /**查询前检查索引和client客户端**/
        if(client == null)
        {
            LOG.info("client为null,初始化异常,无法正常查询!");
            return null;
        }

        // 校验索引是否成功
        if (!isIndexExist(index)) {
            return null;
        }

        //todo 处理查询过程
        BootstrapTablePaginationVo vo = new BootstrapTablePaginationVo();

        // 响应信息
        List responseStrList = new ArrayList();
        MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery(filed, keyWord);
        SearchSourceBuilder sourceBuilder = SearchSourceBuilder.searchSource();
        sourceBuilder.query(matchQueryBuilder);
        // 去重的字段
        if (param.getDistictField() != null) {
            // 去重的信息
            CollapseBuilder cb = new CollapseBuilder(param.getDistictField());
            sourceBuilder.collapse(cb);
        }

        CardinalityAggregationBuilder acb = AggregationBuilders.cardinality("count_id").field(param.getDistictField());
        sourceBuilder.aggregation(acb).from(param.getOffset()).size(param.getLimit());

        SearchRequest searchRequest = new SearchRequest(index).source(sourceBuilder);
        if(StringUtils.isNotBlank(type)){
            searchRequest.types(type);
        }
        // 列表参数
        SearchResponse response = new SearchResponse();
        response = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits shList = response.getHits();
        for (SearchHit searchHit : shList) {
            responseStrList.add(searchHit.getSourceAsString());
        }
        vo.setRows(responseStrList);

        // 统计模块
        NumericMetricsAggregation.SingleValue responseAgg = response.getAggregations().get("count_id");
        int count = 0;
        if (responseAgg != null) {
            double value = responseAgg.value();
            count = getInt(value);
        }
        vo.setTotal(count);

        return vo;
    }

 

termQuery多条件查询模板:

   private Map getExternalTagCountByRiskType(String id,
                                                 long startTime,
                                                 long endTime,
                                                 List tagIds,
                                                 UserStatEnum field){
        //构建查询条件
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        boolQueryBuilder.must(termQuery("id", StringUtils.lowerCase(id)));
        boolQueryBuilder.must(rangeQuery("time").gte(startTime).lte(endTime));
        boolQueryBuilder.must(termsQuery("type", tagIds));
        //不需要返回内容
        sourceBuilder.size(0);


        //构建聚合条件
        AggregationBuilder dateAggBuilder = AggregationBuilders.terms(groupByExternalTag)
                .field("type").order(Terms.Order.count(false)).size(1000)
                .minDocCount(0);
        String date = LocalDate.fromDateFields(new Date(startTime)).toString();

        Map result = Maps.newHashMap();
        //一天以内精确统计
        if(endTime - startTime <= DAY){
            sourceBuilder.query(boolQueryBuilder);
            sourceBuilder.aggregation(dateAggBuilder);

            UserStatEnum intervalEnum = UserStatEnum.DAILY;
            SearchResponse response = esClientService.getAbnormalUserSearchResponse(sourceBuilder, field, intervalEnum, date, appId);
            Terms agg = response.getAggregations().get(groupByExternalTag);
            for (Terms.Bucket entry : agg.getBuckets()) {
                result.put((long)entry.getKey(), entry.getDocCount());
            }
        } else {
            AggregationBuilder cardinalityAggBuilder = AggregationBuilders.cardinality("total")
                    .field(field.getDesc() + ".keyword").precisionThreshold(10000);
            dateAggBuilder.subAggregation(cardinalityAggBuilder);
            sourceBuilder.query(boolQueryBuilder);
            sourceBuilder.aggregation(dateAggBuilder);

            UserStatEnum intervalEnum = UserStatEnum.DAILY;
            SearchResponse response = esClientService.getAbnormalUserSearchResponse(sourceBuilder, field, intervalEnum, date, appId);
            Terms agg = response.getAggregations().get(groupByExternalTag);
            for (Terms.Bucket entry : agg.getBuckets()) {
                Cardinality cardinality = entry.getAggregations().get("total");
                result.put((long)entry.getKey(), cardinality.getValue());
            }
        }

        return result;
    }

 

matchPhraseQuery多条件查询模板:

 

  /**
     * 用户添加索引数据文档  --- 多条件查询
     * @param param 查询参数入口
     * @return
     * @throws Exception
     */
    public BootstrapTablePaginationVo searchMsgByMultiParam(BasicCrashInfoSearchParam param) throws Exception {
        // 响应信息
        List responseStrList = new ArrayList();


        /**处理和检查入参**/
        String index = param.getIndex();                           //index
        String type = param.getType();                             //type
        HashMap map = param.getMultkeyWord();      //精确条件 map
        String startTime = param.getStartTime();                   //起始时间范围查询
        String endTime = param.getEndTime();                       //终止时间
        String sortWord = param.getSortWord();                     //排序关键字


        if(index == null || map == null)
        {
            LOG.info("index、map 存在数据为null,无法正常查询!");
            return null;
        }

        /**查询前检查索引和client客户端**/
        if(client == null)
        {
            LOG.info("client为null,初始化异常,无法正常查询!");
            return null;
        }
        // 校验别名索引是否成功
        if (!isIndexExist(index)) {
            return null;
        }

        /**处理查询过程,先匹配精确条件,然后匹配时间范围,最后匹配排序**/
        BootstrapTablePaginationVo vo = new BootstrapTablePaginationVo();

        //精确条件遍历,分别添加,must表示and
        BoolQueryBuilder qb = QueryBuilders.boolQuery();
        for(Map.Entry entry : map.entrySet())
        {
            String filed = entry.getKey();
            String keyWord = entry.getValue();
            MatchPhraseQueryBuilder mpq = QueryBuilders.matchPhraseQuery(filed,keyWord);
            qb.must(mpq);                                                                  //must表示and should表示or
        }

        //时间范围检索条件,时间范围的设定
        if(startTime != null && endTime != null)
        {
            RangeQueryBuilder rangequerybuilder = QueryBuilders.rangeQuery("xxxxxx").from(startTime).to(endTime);
            qb.must(rangequerybuilder);
        }

        //查询建立,index type
        SearchRequest searchRequest = new SearchRequest(index);
        if(StringUtils.isNotBlank(type)) {
            searchRequest.types(type);
        }

        SearchSourceBuilder sourceBuilder = SearchSourceBuilder.searchSource();


        //聚合分析参数
        CardinalityAggregationBuilder acb = null;
        if(param.getDistictField() != null)
        {
            acb = AggregationBuilders.cardinality("count_id").field(param.getDistictField()).precisionThreshold(10000);
        }


        SearchResponse response = null;
        //按照关键字排序
        if(sortWord == null)
        {
            if(param.getDistictField() != null)
            {
                sourceBuilder.query(qb).aggregation(acb).from(param.getOffset()).size(param.getLimit()).explain(true);
            }else {
                sourceBuilder.query(qb).from(param.getOffset()).size(param.getLimit()).explain(true);
            }

        }else {

            if(param.getDistictField() != null) {
                sourceBuilder.query(qb).aggregation(acb).from(param.getOffset()).size(param.getLimit())
                        //.addSort(sortWord, SortOrder.ASC)
                        .sort(sortWord, SortOrder.DESC)
                        .explain(true);
            }else {
                sourceBuilder.query(qb).from(param.getOffset()).size(param.getLimit())
                        //.addSort(sortWord, SortOrder.ASC)
                        .sort(sortWord, SortOrder.DESC)
                        .explain(true);
            }
        }

        response = client.search(searchRequest.source(sourceBuilder), RequestOptions.DEFAULT);

        SearchHits shList = response.getHits();

        // 列表参数
        for (SearchHit searchHit : shList) {
            responseStrList.add(searchHit.getSourceAsString());
        }
        vo.setRows(responseStrList);

        // 统计模块
        if(param.getDistictField() != null)
        {
            NumericMetricsAggregation.SingleValue responseAgg = response.getAggregations().get("count_id");   //聚合分析
            int count = 0;
            if (responseAgg != null) {
                double value = responseAgg.value();
                count = getInt(value);
            }
            vo.setTotal(count);
        }

        return vo;
    }

 

 

 

 

GET查询,加.keyword与不加.keyword的区别是什么,为什么没有结果:

1.ES5.0及以后的版本取消了string类型,将原先的string类型拆分为textkeyword两种类型。它们的区别在于text会对字段进行分词处理而keyword则不会。
2.当你没有以IndexTemplate等形式为你的索引字段预先指定mapping的话,ES就会使用Dynamic Mapping,通过推断你传入的文档中字段的值对字段进行动态映射。例如传入的文档中字段price的值为12,那么price将被映射为long类型;字段addr的值为"192.168.0.1",那么addr将被映射为ip类型。然而对于不满足ip和date格式的普通字符串来说,情况有些不同:ES会将它们映射为text类型,但为了保留对这些字段做精确查询以及聚合的能力,又同时对它们做了keyword类型的映射,作为该字段的fields属性写到_mapping中。例如,当ES遇到一个新的字段"foobar": "some string"时,会对它做如下的Dynamic Mapping:

{
    "foobar": {
        "type" "text",
        "fields": {
            "keyword": {
                "type": "keyword",
                "ignore_above": 256
            }
        }
    }
}

在之后的查询中使用foobar是将foobar作为text类型查询,而使用foobar.keyword则是将foobar作为keyword类型查询。前者会对查询内容做分词处理之后再匹配,而后者则是直接对查询结果做精确匹配
3.ES的term query做的是精确匹配而不是分词查询,因此对text类型的字段做term查询将是查不到结果的(除非字段本身经过分词器处理后不变,未被转换或分词)。此时,必须使用foobar.keyword来对foobar字段以keyword类型进行精确匹配。

你可能感兴趣的:(elasticsearch的两种初始化方式以及matchQuery,termQuery, multiMatchQuery区别与实现)