方式一:使用TransportClient方式:
public ESConfiguration() { if(EnvUtils.isOnlineEnv()) { hostName = "xxxxx1"; hostName2 = "xxxx2"; hostName3 = "xxxx3"; port = "9300"; clusterName = "yyyy"; }else { hostName = "vvvvv1"; hostName2 = "vvvv2"; hostName3 = "vvvv3"; port = "9300"; clusterName = "zzzz"; } createTransportClient(); } public void createTransportClient() { try { // 配置信息 -- 配置 集群的名字 + 连接池的个数 Settings esSetting = Settings.builder().put("cluster.name", clusterName) //设置连接的集群名称 .put("client.transport.sniff", false) //增加嗅探机制,找到ES集群 .put("thread_pool.search.size", Integer.parseInt(poolSize)) // 增加线程池个数,暂时设为5 .build(); client = new PreBuiltTransportClient(esSetting); //配置host 和 端口port InetSocketTransportAddress inetSocketTransportAddress = new InetSocketTransportAddress(InetAddress.getByName(hostName), Integer.valueOf(port)); InetSocketTransportAddress inetSocketTransportAddress2 = new InetSocketTransportAddress(InetAddress.getByName(hostName2), Integer.valueOf(port)); InetSocketTransportAddress inetSocketTransportAddress3 = new InetSocketTransportAddress(InetAddress.getByName(hostName3), Integer.valueOf(port)); client.addTransportAddresses(inetSocketTransportAddress).addTransportAddresses(inetSocketTransportAddress2).addTransportAddresses(inetSocketTransportAddress3); } catch (Exception e) { logger.error("elasticsearch TransportClient create error!!!", e); } } public TransportClient getInstance() { return client; }
方式二:使用 RestHighLevelClient + http 方式
/** * es集群地址 */ private String servers = "xxxx1,xxxx2,xxxx3"; /** * 端口 */ private int port = 9301; private int size = 3; private String scheme = "http"; private RestHighLevelClient restHighLevelClient; @PostConstruct public void init() { logger.info("init Es Client..."); RestClientBuilder builder = getRestClientBuilder(); restHighLevelClient = new RestHighLevelClient(builder); logger.info("init Es Client complete..."); } public RestClientBuilder getRestClientBuilder() { String[] address = StringUtils.split(servers, ","); if (ArrayUtils.isNotEmpty(address) && address.length == size) { return RestClient.builder(new HttpHost(address[0], port, scheme), new HttpHost(address[1], port, scheme), new HttpHost(address[2], port, scheme)); } return null; } public RestHighLevelClient getInstance() { if (restHighLevelClient == null) { init(); } return restHighLevelClient; }
使用highlevelClient,使用bulk方式插入数据:
public String executeBulkDocInsert(List
************************************************************ matchQuery,termQuery, multiMatchQuery区别与实现 ************************************************************
区别1:matchPhraseQuery和matchQuery等的区别,在使用matchQuery等时,在执行查询时,搜索的词会被分词器分词,而使用matchPhraseQuery时,
不会被分词器分词,而是直接以一个短语的形式查询,而如果你在创建索引所使用的field的value中没有这么一个短语(顺序无差,且连接在一起),那么将查询不出任何结果。
区别2:
matchQuery:会将搜索词分词,再与目标查询字段进行匹配,若分词中的任意一个词与目标字段匹配上,则可查询到。
termQuery:不会对搜索词进行分词处理,而是作为一个整体与目标字段进行匹配,若完全匹配,则可查询到。
matchQuery多条件查询模板:
public BootstrapTablePaginationVosearchMsgByParam(BasicCrashInfoSearchParam param) throws Exception { /**处理和检查入参**/ String index = param.getIndex(); String type = param.getType(); String filed = param.getField(); String keyWord = param.getKeyWord(); if(index == null || filed == null || keyWord == null) { LOG.info("index、field、keyword 存在数据为null,无法正常查询!"); return null; } /**查询前检查索引和client客户端**/ if(client == null) { LOG.info("client为null,初始化异常,无法正常查询!"); return null; } // 校验索引是否成功 if (!isIndexExist(index)) { return null; } //todo 处理查询过程 BootstrapTablePaginationVo vo = new BootstrapTablePaginationVo (); // 响应信息 List responseStrList = new ArrayList (); MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery(filed, keyWord); SearchSourceBuilder sourceBuilder = SearchSourceBuilder.searchSource(); sourceBuilder.query(matchQueryBuilder); // 去重的字段 if (param.getDistictField() != null) { // 去重的信息 CollapseBuilder cb = new CollapseBuilder(param.getDistictField()); sourceBuilder.collapse(cb); } CardinalityAggregationBuilder acb = AggregationBuilders.cardinality("count_id").field(param.getDistictField()); sourceBuilder.aggregation(acb).from(param.getOffset()).size(param.getLimit()); SearchRequest searchRequest = new SearchRequest(index).source(sourceBuilder); if(StringUtils.isNotBlank(type)){ searchRequest.types(type); } // 列表参数 SearchResponse response = new SearchResponse(); response = client.search(searchRequest, RequestOptions.DEFAULT); SearchHits shList = response.getHits(); for (SearchHit searchHit : shList) { responseStrList.add(searchHit.getSourceAsString()); } vo.setRows(responseStrList); // 统计模块 NumericMetricsAggregation.SingleValue responseAgg = response.getAggregations().get("count_id"); int count = 0; if (responseAgg != null) { double value = responseAgg.value(); count = getInt(value); } vo.setTotal(count); return vo; }
termQuery多条件查询模板:
private MapgetExternalTagCountByRiskType(String id, long startTime, long endTime, List tagIds, UserStatEnum field){ //构建查询条件 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(termQuery("id", StringUtils.lowerCase(id))); boolQueryBuilder.must(rangeQuery("time").gte(startTime).lte(endTime)); boolQueryBuilder.must(termsQuery("type", tagIds)); //不需要返回内容 sourceBuilder.size(0); //构建聚合条件 AggregationBuilder dateAggBuilder = AggregationBuilders.terms(groupByExternalTag) .field("type").order(Terms.Order.count(false)).size(1000) .minDocCount(0); String date = LocalDate.fromDateFields(new Date(startTime)).toString(); Map result = Maps.newHashMap(); //一天以内精确统计 if(endTime - startTime <= DAY){ sourceBuilder.query(boolQueryBuilder); sourceBuilder.aggregation(dateAggBuilder); UserStatEnum intervalEnum = UserStatEnum.DAILY; SearchResponse response = esClientService.getAbnormalUserSearchResponse(sourceBuilder, field, intervalEnum, date, appId); Terms agg = response.getAggregations().get(groupByExternalTag); for (Terms.Bucket entry : agg.getBuckets()) { result.put((long)entry.getKey(), entry.getDocCount()); } } else { AggregationBuilder cardinalityAggBuilder = AggregationBuilders.cardinality("total") .field(field.getDesc() + ".keyword").precisionThreshold(10000); dateAggBuilder.subAggregation(cardinalityAggBuilder); sourceBuilder.query(boolQueryBuilder); sourceBuilder.aggregation(dateAggBuilder); UserStatEnum intervalEnum = UserStatEnum.DAILY; SearchResponse response = esClientService.getAbnormalUserSearchResponse(sourceBuilder, field, intervalEnum, date, appId); Terms agg = response.getAggregations().get(groupByExternalTag); for (Terms.Bucket entry : agg.getBuckets()) { Cardinality cardinality = entry.getAggregations().get("total"); result.put((long)entry.getKey(), cardinality.getValue()); } } return result; }
matchPhraseQuery多条件查询模板:
/** * 用户添加索引数据文档 --- 多条件查询 * @param param 查询参数入口 * @return * @throws Exception */ public BootstrapTablePaginationVosearchMsgByMultiParam(BasicCrashInfoSearchParam param) throws Exception { // 响应信息 List responseStrList = new ArrayList (); /**处理和检查入参**/ String index = param.getIndex(); //index String type = param.getType(); //type HashMap map = param.getMultkeyWord(); //精确条件 map String startTime = param.getStartTime(); //起始时间范围查询 String endTime = param.getEndTime(); //终止时间 String sortWord = param.getSortWord(); //排序关键字 if(index == null || map == null) { LOG.info("index、map 存在数据为null,无法正常查询!"); return null; } /**查询前检查索引和client客户端**/ if(client == null) { LOG.info("client为null,初始化异常,无法正常查询!"); return null; } // 校验别名索引是否成功 if (!isIndexExist(index)) { return null; } /**处理查询过程,先匹配精确条件,然后匹配时间范围,最后匹配排序**/ BootstrapTablePaginationVo vo = new BootstrapTablePaginationVo (); //精确条件遍历,分别添加,must表示and BoolQueryBuilder qb = QueryBuilders.boolQuery(); for(Map.Entry entry : map.entrySet()) { String filed = entry.getKey(); String keyWord = entry.getValue(); MatchPhraseQueryBuilder mpq = QueryBuilders.matchPhraseQuery(filed,keyWord); qb.must(mpq); //must表示and should表示or } //时间范围检索条件,时间范围的设定 if(startTime != null && endTime != null) { RangeQueryBuilder rangequerybuilder = QueryBuilders.rangeQuery("xxxxxx").from(startTime).to(endTime); qb.must(rangequerybuilder); } //查询建立,index type SearchRequest searchRequest = new SearchRequest(index); if(StringUtils.isNotBlank(type)) { searchRequest.types(type); } SearchSourceBuilder sourceBuilder = SearchSourceBuilder.searchSource(); //聚合分析参数 CardinalityAggregationBuilder acb = null; if(param.getDistictField() != null) { acb = AggregationBuilders.cardinality("count_id").field(param.getDistictField()).precisionThreshold(10000); } SearchResponse response = null; //按照关键字排序 if(sortWord == null) { if(param.getDistictField() != null) { sourceBuilder.query(qb).aggregation(acb).from(param.getOffset()).size(param.getLimit()).explain(true); }else { sourceBuilder.query(qb).from(param.getOffset()).size(param.getLimit()).explain(true); } }else { if(param.getDistictField() != null) { sourceBuilder.query(qb).aggregation(acb).from(param.getOffset()).size(param.getLimit()) //.addSort(sortWord, SortOrder.ASC) .sort(sortWord, SortOrder.DESC) .explain(true); }else { sourceBuilder.query(qb).from(param.getOffset()).size(param.getLimit()) //.addSort(sortWord, SortOrder.ASC) .sort(sortWord, SortOrder.DESC) .explain(true); } } response = client.search(searchRequest.source(sourceBuilder), RequestOptions.DEFAULT); SearchHits shList = response.getHits(); // 列表参数 for (SearchHit searchHit : shList) { responseStrList.add(searchHit.getSourceAsString()); } vo.setRows(responseStrList); // 统计模块 if(param.getDistictField() != null) { NumericMetricsAggregation.SingleValue responseAgg = response.getAggregations().get("count_id"); //聚合分析 int count = 0; if (responseAgg != null) { double value = responseAgg.value(); count = getInt(value); } vo.setTotal(count); } return vo; }
GET查询,加.keyword与不加.keyword的区别是什么,为什么没有结果:
1.ES5.0及以后的版本取消了string
类型,将原先的string
类型拆分为text
和keyword
两种类型。它们的区别在于text
会对字段进行分词处理而keyword
则不会。
2.当你没有以IndexTemplate等形式为你的索引字段预先指定mapping的话,ES就会使用Dynamic Mapping,通过推断你传入的文档中字段的值对字段进行动态映射。例如传入的文档中字段price的值为12,那么price将被映射为long
类型;字段addr的值为"192.168.0.1",那么addr将被映射为ip
类型。然而对于不满足ip和date格式的普通字符串来说,情况有些不同:ES会将它们映射为text类型,但为了保留对这些字段做精确查询以及聚合的能力,又同时对它们做了keyword类型的映射,作为该字段的fields属性写到_mapping中。例如,当ES遇到一个新的字段"foobar": "some string"时,会对它做如下的Dynamic Mapping:
{ "foobar": { "type" "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } } }
在之后的查询中使用foobar是将foobar作为text类型查询,而使用foobar.keyword则是将foobar作为keyword类型查询。前者会对查询内容做分词处理之后再匹配,而后者则是直接对查询结果做精确匹配。
3.ES的term query做的是精确匹配而不是分词查询,因此对text类型的字段做term查询将是查不到结果的(除非字段本身经过分词器处理后不变,未被转换或分词)。此时,必须使用foobar.keyword来对foobar字段以keyword类型进行精确匹配。