TCP三次握手详细介绍
1.TCP/IP协议简单介绍:
TCP/IP是一个协议族,通常分不同层次进行工作,每个层次负责不同的通信功能。包含以下四个层次:
应用层:(http、telnet、Email、dns等协议)
传输层:(tcp和udp)
网络层:(ip、icmp、rarp、bootp)
链路层:(设备驱动程序及接口卡)
1).链路层,也称作数据链路层或者网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡。它们一起处理与电缆(或其他任何传输媒介)的物理接口细节。
2).网络层,也称作互联网层,处理分组在网络中的活动,例如分组的选路。网络层协议包括IP协议(网际协议)、ICMP协议(Internet互联网控制报文协议),以及IGMP协议(Internet组管理协议)。
3).传输层主要是为两台主机上的应用程序提供端到端的通信。在TCP/IP协议族中,有两个互不相同的传输协议:TCP(传输控制协议)和UDP(用户数据报协议)。TCP为两台主机提供高可靠性的数据通信。他所作的工作包括把应用程序交给它的数据分成合适的小块交给下面的网络层,确认接收到的分组,设置发送最后确认分组的超时时间等。由于传输层提供了高可靠性的端到端通信,因此应用层可以忽略所有这些细节。而另一方面,UDP则为应用层提供一种非常简单的服务。它只是把称作数据报的分组从一台主机发送到另一台主机,但并不保证该数据报能到达另一端。任何必须的可靠性必须由应用层来提供。
4).应用层负责处理特定的应用程序细节。包括Telnet(远程登录)、FTP(文件传输协议)、SMTP(简单邮件传送协议)以及SNMP(简单网络管理协议)等。
二. TCP协议
TCP是一种面向连接(连接导向)的、可靠的基于字节流的传输层通信协议。TCP将用户数据打包成报文段,它发送后启动一个定时器,另一端收到的数据进行确认、对失序的数据重新排序、丢弃重复数据。
TCP的特点有:
1. TCP是面向连接的运输层协议
2. 每一条TCP连接只能有两个端点,每一条TCP连接只能是点对点的
3. TCP提供可靠交付的服务
4. TCP提供全双工通信。数据在两个方向上独立的进行传输。因此,连接的每一端必须保持每个方向上的传输数据序号。
5. 面向字节流。面向字节流的含义:虽然应用程序和TCP交互是一次一个数据块,但TCP把应用程序交下来的数据仅仅是一连串的无结构的字节流
TCP报文首部,如下图所示:
源端口、目标端口:计算机上的进程要和其他进程通信是要通过计算机端口的,而一个计算机端口某个时刻只能被一个进程占用,所以通过指定源端口和目标端口,就可以知道是哪两个进程需要通信。源端口、目标端口是用16位表示的,可推算计算机的端口个数为2^16个。
序列号:表示本报文段所发送数据的第一个字节的编号。在TCP连接中所传送的字节流的每一个字节都会按顺序编号。由于序列号由32位表示,所以每2^32个字节,就会出现序列号回绕,再次从 0 开始。那如何区分两个相同序列号的不同TCP报文段就是一个问题了,后面会有答案,暂时可以不管。
确认号:表示接收方期望收到发送方下一个报文段的第一个字节数据的编号。也就是告诉发送发:我希望你(指发送方)下次发送的数据的第一个字节数据的编号是这个确认号。也就是告诉发送方:我希望你(指发送方)下次发送给我的TCP报文段的序列号字段的值是这个确认号。
TCP首部长度:由于TCP首部包含一个长度可变的选项部分,所以需要这么一个值来指定这个TCP报文段到底有多长。或者可以这么理解:就是表示TCP报文段中数据部分在整个TCP报文段中的位置。该字段的单位是32位字,即:4个字节。
URG:表示本报文段中发送的数据是否包含紧急数据。URG=1,表示有紧急数据。后面的紧急指针字段只有当URG=1时才有效。
ACK:表示是否前面的确认号字段是否有效。ACK=1,表示有效。只有当ACK=1时,前面的确认号字段才有效。TCP规定,连接建立后,ACK必须为1。
PSH:告诉对方收到该报文段后是否应该立即把数据推送给上层。如果为1,则表示对方应当立即把数据提交给上层,而不是缓存起来。
RST:只有当RST=1时才有用。如果你收到一个RST=1的报文,说明你与主机的连接出现了严重错误(如主机崩溃),必须释放连接,然后再重新建立连接。或者说明你上次发送给主机的数据有问题,主机拒绝响应。
SYN:在建立连接时使用,用来同步序号。当SYN=1,ACK=0时,表示这是一个请求建立连接的报文段;当SYN=1,ACK=1时,表示对方同意建立连接。SYN=1,说明这是一个请求建立连接或同意建立连接的报文。只有在前两次握手中SYN才置为1。
FIN:标记数据是否发送完毕。如果FIN=1,就相当于告诉对方:“我的数据已经发送完毕,你可以释放连接了”
窗口大小:表示现在运行对方发送的数据量。也就是告诉对方,从本报文段的确认号开始允许对方发送的数据量。
校验和:提供额外的可靠性。具体如何校验,参考其他资料。
紧急指针:标记紧急数据在数据字段中的位置。
选项部分:其最大长度可根据TCP首部长度进行推算。TCP首部长度用4位表示,那么选项部分最长为:(2^4-1)*4-20=40字节。
TCP三次握手过程
第一次握手:建立连接时,客户端发送同步序号syn=1,随机产生seq number数据包发送(seq=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。
第二次握手:服务器收到报文请求,由SYN=1知道客户端要建立连接请求,向客户端发送ack number(ack=x+1),syn=1,同时自己也发送一个SYN包(seq=y),即SYN+ACK包,此时服务器进入SYN_RCVD
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ack(ack=y+1),同时发送序号seq=y+1,此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。
TCP三次握手过程如下图所示:
四次断开:
由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这个原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
(1)客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送。
(2)服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1。和SYN一样,一个FIN将占用一个序号。
(3)服务器B关闭与客户端A的连接,发送一个FIN给客户端A。
(4)客户端A发回ACK报文确认,并将确认序号设置为收到序号加1。
TCP采用四次挥手关闭连接如图所示。
三次握手状态详细说明:
1.CLOSED:起始点,在超时或者连接关闭时候进入此状态。
2.LISTEN:服务端在等待连接过来时候的状态,服务端为此要调用socket,bind,listen函数,就能进入此状态。此称为应用程序被动打开(等待客户端来连接)。
3.SYN_SENT:客户端发起连接,发送SYN给服务器端。如果服务器端不能连接,则直接进入CLOSED状态。
4.SYN_RCVD:跟3对应,服务器端接受客户端的SYN请求,服务器端由LISTEN状态进入SYN_RCVD状态。同时服务器端要回应一个ACK,同时发送一个SYN给客户端;另外一种情况,客户端在发起SYN的同时接收到服务器端得SYN请求,客户端就会由SYN_SENT到SYN_RCVD状态。
5.ESTABLISHED:服务器端和客户端在完成3次握手进入状态,说明已经可以开始传输数据了。
四次断开状态详细说明:
6.FIN_WAIT_1: 关闭的一方,由ESTABLISHED进入此状态。具体的动作是发送FIN给对方。
7.FIN_WAIT_2: 闭的一方,接收到对方的FIN_ACK(即fin包的回应包,进入此状态。
8.CLOSE_WAIT: 接收到FIN以后,被动关闭的一方进入此状态。具体动作是接收到FIN,同时发送ack。(之所以叫close_wait可以理解为被动关闭方此时正在等待上层应用发出关闭连接指令)
9.LAST_ACK:被动关闭的一方,发起关闭请求,由状态close_wait进入此状态。具体动作是发送FIN给对方,同时在接收到ACK进入CLOSED状态。
10.CLOSING:两边同时发起关闭请求,会由FIN_WAIT_1进入此状态。具体动作是接收到FIN请求,同时相应一个ACK。
11.TIME_WAIT:最纠结的状态来了。从状态图上可以看出,有三个状态可以转化成它:
a:由FIN_WAIT_2进入此状态:在双方不同时发起FIN的情况下,主动关闭的一方在完成自身发起的关闭请求后,接收到被动关闭一方的FIN后进入的状态。
b:由CLOSING状态进入:双方同时发起关闭,都做了发起FIN的请求,同时接收到了FIN并做了ACK的情况下,有CLOSING状态进入。
c:由FIN_WAIT_1状态进入:同时接收到FIN(对方发起),ACK(本身发起的FIN回应),与b的区别在于本身发起的FIN回应的ACK先于对方的FIN请求到达,而b是FIN先到达。这种情况概率最小。
关闭的4次连接最难理解的状态是TIME_WAIT,存在TIME_WAIT的2个理由:
1.可靠地实现TCP全双工连接的终止。
2.允许老的重复分节在网络中消逝。
问题:TCP建立连接时,为什么是 三次握手呢?
client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”在google上搜到的网友的解释:
这个问题的本质是, 信道不可靠, 但是通信双发需要就某个问题达成一致. 而要解决这个问题, 无论你在消息中包含什么信息, 三次通信是理论上的最小值. 所以三次握手不是TCP本身的要求, 而是为了满足"在不可靠信道上可靠地传输信息"这一需求所导致的. 请注意这里的本质需求,信道不可靠, 数据传输要可靠. 三次达到了, 那后面你想接着握手也好, 发数据也好, 跟进行可靠信息传输的需求就没关系了. 因此,如果信道是可靠的, 即无论什么时候发出消息, 对方一定能收到, 或者你不关心是否要保证对方收到你的消息, 那就能像UDP那样直接发送消息就可以了.”
为什么建立连接协议是三次握手,而关闭连接却是四次握手呢?
这是因为服务端的LISTEN状态下的SOCKET当收到SYN报文的建连请求后,它可以把ACK和SYN(ACK起应答作用,而SYN起同步作用)放在一个报文里来发送。但关闭连接时,当收到对方的FIN报文通知时,它仅仅表示对方没有数据发送给你了;但未必你所有的数据都全部发送给对方了,所以你可能未必会马上会关闭SOCKET,也即你可能还需要发送一些数据给对方之后,再发送FIN报文给对方来表示你同意现在可以关闭连接了,所以它这里的ACK报文和FIN报文多数情况下都是分开发送的。
为什么TIME_WAIT状态还需要等2MSL后才能返回到CLOSED状态?
这是因为:虽然双方都同意关闭连接了,而且握手的4个报文也都协调和发送完毕,按理可以直接回到CLOSED状态(就好比从SYN_SEND状态到 ESTABLISH状态那样);但是因为我们必须要假想网络是不可靠的,你无法保证你最后发送的ACK报文会一定被对方收到,因此对方处于 LAST_ACK状态下的SOCKET可能会因为超时未收到ACK报文,而重发FIN报文,所以这个TIME_WAIT状态的作用就是用来重发可能丢失的 ACK报文。