Question
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
Example 1:
Input: n =12
Output: 3 Explanation:12 = 4 + 4 + 4.
Example 2:
Input: n =13
Output: 2 Explanation:13 = 4 + 9.
方法一:动态规划
time complexity:O(n^2)
很容易想到动态规划的方法,先求出1, 2, 3, ..., n-1的最小平方数个数值,再求出n的最小平方数个数值。动态转移方程为:
f(i) = min([ f[k]+f[i-k] for k in range(1, i)] )
class Solution: def numSquares(self, n: int) -> int: import math f = [0] f.append(1) for i in range(2, n+1): if i == int((math.sqrt(i))) ** 2: f.append(1) else: f.append(min([f[k]+f[i-k] for k in range(1, i)])) return f[n]
TLE,时间复杂度太高,502 / 588 test cases passed.
方法二:动态规划,开方剪枝
time complexity:O(n*sqrt(n))
方法一的大体思路不错,但由于枚举了1, 2, 3, ..., i-1所有的值,导致此步用了O(n),但其实没必要枚举1, 2, 3, ..., i-1之间配对的值,只需要枚举完全平方数就行了,所以可以改进为只对完全平方数进行枚举。
class Solution: def numSquares(self, n: int) -> int: f = [n] * (n+1) f[0] = 0 f[1] = 1 for i in range(2, n+1): j = 1 while j*j <= i: f[i] = min(f[i], f[i-j*j]+1) j+=1 return f[-1]
方法三:BFS
time complexity:O(sqrt(n) ^ k) (k平均情况不确定,由方法四可知,最坏情况是4)
以13为例:
方法四:四平方和定理
time complexity:
参考:
https://blog.csdn.net/qq_39445165/article/details/89479142
https://blog.csdn.net/qq_17550379/article/details/80875782