pandas-python基础操作

import numpy as np
import pandas as pd

index = pd.date_range('1/1/2000',periods=8)
s = pd.Series(np.random.randn(5),index = ['a','b','c','d','e'])
df = pd.DataFrame(np.random.randn(8,3),index = index,columns=['A','B','C'])
# -------------------------------------------------------------------------
# 目录:
# 属性和底层数据
# 加速操作
# 广播操作-加减乘除
# 缺失值与填充缺失值
# 比较操作
# 布尔简化----> dfSeries的对比
# 描述性他统计 ----> 求和等函数
# 最大值与最小值对应的索引-离散化与分位数
# 函数应用
# 重置索引与更换标签-align--填充
# 迭代 for i in object
# .dt 访问器 -访问时间的工具
# 排序
# -------------------------------------------------------------------------

# -------------------------------------------------------------------------
# 属性和底层数据
# Pandas可以通过多个属性访问元数据:shape和轴标签。
# 推荐使用to_numpy
# -------------------------------------------------------------------------
df.columns = [x.lower() for x in df.columns]
# .array用于提取数据
s.array # pd.Series 转换为array数组
df_array = df.index.array
# 提取Numpy数组,,s.to_numpy() 或者 np.asarray()
# 推荐使用to_numpy
# s.to_numpy() # 可以转换,可以转换类型
np_array = np.asarray(s)

# -------------------------------------------------------------------------
# 加速操作
# 借助numexprbolltleneck支持库,Pandas可以加速特定类型的二进制数值与布尔操作。默认启用状态
# 处理大数据加速效果明显,numexpr使用智能分块、缓存与多核技术;
# bottleneck是一组专属cpython例程,处理nans值的数组时,特别快
# https://pandas.pydata.org/pandas-docs/stable/install.html#install-recommended-dependencies
# -------------------------------------------------------------------------
# pd.set_option('compute.use_bottlenect',False)
# pd.set_option('compute.use_numexpr',False)

# -------------------------------------------------------------------------
# 广播操作-加减乘除
# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sub.html
# add(),sub(),mul(),div()radd(),rsub() 加减乘除
# -------------------------------------------------------------------------
df_operator = pd.DataFrame({
'one':pd.Series(np.random.randn(3),index=list('abc')),
'two':pd.Series(np.random.randn(4),index=list('abcd')),
'three':pd.Series(np.random.randn(3),index=list('bcd'))
})
row_operator = df_operator.iloc[1]
column_operator = df_operator['two']
df_operator.sub(row_operator,axis='columns') # 相减

# 多层索引,多层索引指定,需要按行处理,axis=0level指定索引
dfmi_operator = df_operator.copy()
dfmi_operator.index = pd.MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')],names=['first','second'])
dfmi_operator.sub(column_operator,axis=0,level='second')
# divmod ,内置函数,,同时执行向下取整数与模运算 div,rem = divmod(s,[3])
# 缺失值, df.add(df2,fill_value = 0)

# -------------------------------------------------------------------------
# 缺失值与填充缺失值
# SeriesDataFrame支持fill_value选项。
# -------------------------------------------------------------------------
# df.add(df2,fill_value=0)

# -------------------------------------------------------------------------
# 比较操作
# SeriesDataFrame支持eqneltgtlege
# -------------------------------------------------------------------------
# df.gt(df2)

# -------------------------------------------------------------------------
# 布尔简化
# empty() any() all() bool() 可以把数据汇总简化至单个布尔值
# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.bool.html#pandas.DataFrame.bool
# -------------------------------------------------------------------------
(df>0).all() # (df>0).any.any()
# 比较对象是否有效
df + df == df+2 # SeriesDataFrameN为框架提供了 equals()方法。
(df+df).equals(df*2)
pd.Series(['foo','bar','gz']) == 'boo' # => True,False,False
pd.Series(['foo','bar','gz']) == pd.Index(['boo','bar','qux']) # => True,True,False

# 合并重叠数据集
# df1.combine_first(df2)

# -------------------------------------------------------------------------
# 描述性统计
# sum() mean() quantile() cumsum() cumprod()
# Series无需axis参数。 DataFrame index->axis =0 columns-> axis = 1
# 都支持,skipna关键字,指定是否要排除缺失数据
# std() 标准差函数,ddo默认为1,
# 英文官网:https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#stats-moments-expanding-note
# 中文文档官网:https://www.pypandas.cn/docs/getting_started/basics.html#描述性统计
# describehttps://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-selectdtypes
# -------------------------------------------------------------------------
descrip_df = df.sum(0,skipna = False)
ts_stand = (df - df.mean())/df.std(ddof = 0)

# -------------------------------------------------------------------------
# 最大值与最小值对应的索引-离散化与分位数
# SeriesDataFrameidxmax()idxmin()
# Seriesvalue_counts()方法可以统计值的数量
# mode() 可以统计 SeriesDataFrame的众数
# cut()函数以值为根据实现分箱,离散化,将数值划分为多个区间 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html#pandas.cut
# qcut() 计算样本分位数, https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html#pandas.qcut
# -------------------------------------------------------------------------
s1 = pd.Series(np.random.randn(5))
s1.idxmin(axis=1),s1.idxmin(axis=0)

arr = np.random.randn(20)
factor = pd.cut(arr,4)
# 结果如下:Categories (4, interval[float64]): [(-2.111, -1.153] < (-1.153, -0.2] < (-0.2, 0.754] < (0.754, 1.707]]
factor1 = pd.cut(arr,[-5,-1,0,1,5])
factor_qcut = pd.qcut(arr,4)
factor_qcut1 = pd.qcut(arr,[0,0.25,0.5,0.75,1])
# 统计四分位数的个数
factor_qcut_count = pd.value_counts(factor_qcut1)

# -------------------------------------------------------------------------
# 函数应用
# 表级函数应用:pipe() https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pipe.html#pandas.DataFrame.pipe
# 行列级函数应用:apply() https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html#pandas.DataFrame.apply
# 聚合Apiagg() transform() https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.agg.html#pandas.DataFrame.agg
# 元素级函数应用:applymap() https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.applymap.html#pandas.DataFrame.applymap
# https://www.pypandas.cn/docs/getting_started/basics.html#函数应用
# pipe 源码:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pipe.html#pandas.DataFrame.pipe
# -------------------------------------------------------------------------
# windows API https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#stats-aggregate
# resample APIhttps://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-aggregate

# agg操作
tsdf = pd.DataFrame(np.random.randn(10,3),columns=['A','B','C'],index=pd.date_range('1/1/2019',periods=10))
tsdf.iloc[3:7] = np.nan
def mymean(x):
return x.mean()
tsdf_agg_sum = tsdf.agg(['sum','mean',lambda x:x.mean(),mymean])
tsdf_agg_dict = tsdf.agg({'A':['sum'],'B':[lambda x:x.sum()],'C':[mymean]}) # 字典是每列对应的,聚合
# 创建自定义describe函数
from functools import partial
q_25 = partial(pd.Series.quantile,q=0.25)
q_25.__name__ = '25%'
q_75 = partial(pd.Series.quantile,q=0.75)
q_75.__name__ = '75%'
tsdf_multi_function = tsdf.agg(['count','mean','std','min',q_25,'median',q_75,'max'])

# transform操作,类型与对每个元素进行操作
tsdf_trans_abs = tsdf.transform('abs') # tsdf_trans_abs.transfrom(np.abs)
tsdf_trans = tsdf.transform({'A':np.abs,'B':[lambda x:x+1]})

# -------------------------------------------------------------------------
# 重置索引与更换标签-对其对象-align--填充
# reindex1、让数据匹配一组新标签,并重新排序
# 2、无数据但有标签的位置插入缺失值
# 3
# reindex_like():使用其他数据集的索引, df.reindex_like(df2)
# align对其多个对象,和数据库的join很像: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#merging
# join选项有:outerleftrightinner四个,连接方式
# 参数有:methodjoinaxislimit(连续匹配的最大数量)tolerance(限定了索引与索引器值之间的最大距离)
# method的方法如下:
# pad/ffill 向前填充
# bfill/backfill 向后填充
# nearest 从最近的索引值填充
# drop():
# rename():
# -------------------------------------------------------------------------
reindex_s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'])
reindex_st = reindex_s.reindex(['b','e','f','d'])
reindex_df = df.copy()
reindex_dfa = reindex_df.reindex(index=['c','f','b'],columns=['three','two','one'],)

# align
align_s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'])
align_s1 = align_s[:4]
align_s2 = align_s[1:]
align_ss = align_s1.align(align_s2,join='inner')

# rename
align_renmae = align_s.copy()
align_renmae.rename({'a':'one','b':'two'},axis=0,inplace=True)

# -------------------------------------------------------------------------
# 迭代 for i in object
# 基础迭代,for i in object 用于生成Series 值,或DataFrame 列标签
# items()方法,通过键值迭代
# for labelser in df.items():
# iterrows(),当做(index,Series)进行迭代
# for index,row in df.iterrows():
# itertuples,比iterrows
# for row in df.itertuples():
# -------------------------------------------------------------------------
for row in df.itertuples():
a = row

# -------------------------------------------------------------------------
# .dt 访问器 -访问时间的工具
# dayhoursecondmonthyear
# -------------------------------------------------------------------------
dt_s = pd.Series(pd.date_range('20190101 09:10:12',periods=4))
dt_s.dt.second
dt_s[dt_s.dt.day == 2]

# 格式化时间
dt_s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
# 格式化时间字符串
dt_s.dt.strftime('%Y%m%d') # strftime一样

# -------------------------------------------------------------------------
# 排序
# 排序所三种,按照索引排序、按照值排序、混合排序
# nsmallest() nlargest() 最小值,最大值
# Series: nsmalllest(5) nlargest(2)
# DataFrame: df.smallest(3,['a','b'])
# -------------------------------------------------------------------------
df.sort_index(ascending=False,axis=1)
align_renmae.sort_values(by=['one'])


你可能感兴趣的:(pandas-python基础操作)