随着无线局域网技术的应用日渐广泛,用户对数据传输速率的要求越来越高。但是在室内,这个较为复杂的电磁环境中,多经效应、频率选择性衰落和其他干扰源的存在使的实现无线信道中的高速数据传输比有线信道中困难,WLAN需要采用合适的调制技术。

IEEE802.11无线局域网络是一种能支持较高数据传输速率(1-54Mbit/s),采用微蜂窝,微微蜂窝结构的自主管理的计算机局域网络。其关键技术大致有三种:DSSS、CCK技术,和 PBCC,和OFDM。每种技术皆有其特点,目前,扩频调制技术正成为主流,而OFDM技术由于其优越的传输性能成为人们关注的新焦点。直序列扩频调制技术(DSSS:Direct Sequence Spread Spectrum)及补码键控(CCK:Complementary Code Keying)技术、包二进制卷积(PBCC:Packet Binary Convolutional Code)和正交频分复用技术OFDM:Orthogonal Frequency Division Mustiplexing

2.1 DSSS调制技术

基于DSSS的调制技术有三种。最初IEEE802.11标准制定在1Mbps数据速率下采用DBPSK。如提供2Mbps的数据速率,要采用DQPSK,这种方法每次处理两个比特码元,成为双比特。第三种是基于CCK的QPSK,是11b标准采用的基本数据调制方式。它采用了补码序列与直序列扩频技术,是一种单载波调制技术,通过PSK方式传输数据,传输速率分为1,2,5.5和11Mbps。CCK通过与接收端的Rake接收机配合使用,能够在高效率的传输数据的同时有效的克服多径效应。IEEE802.11b使用了CCK调制技术来提高数据传输速率,最高可达11Mbps。但是传输速率超过11Mbps,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。因此,802.11工作组,为了推动无线局域网的发展,又引入新的调制技术。

2.2 PBCC调制技术

PBCC调制技术是由TI公司提出的,已作为802.11g的可选项被采纳。PBCC也是单载波调制,但它与CCK不同,它使用了更多复杂的信号星座图。PBCC采用8PSK,而CCK使用BPSK/QPSK;另外PBCC使用了卷积码,而CCK使用区块码。因此,它们的解调过程是十分不同的。PBCC可以完成更高速率的数据传输,其传输速率为11,22和33Mbps。

2.3 OFDM技术

OFDM技术是一种无线环境下的高速多载波传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想:就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输,从而有效的抑制无线信道的时间弥散所带来的ISI。这样就减少了接收机内均衡的复杂度,有时甚至可以不采用均衡器,仅通过插入循环前缀的方式消除ISI的不利影响。

由于在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。(如图1.1所示)在各个子信道中的这种正交调制和解调可以采用IFFT和FFT方法来实现,随着大规模集成电路技术与DSP技术的发展,IFFT和FFT都是非常容易实现的。FFT的引入,大大降低了OFDM的实现复杂性,提升了系统的性能。(如图1.2所示OFDM发送接收机系统结构)


图1.1 FDM信号与OFDM信号频谱比较

无线数据业务一般都存在非对称性,即下行链路中传输的数据量要远远大于上行链路中的数据传输量。因此无论从用户高速数据传输业务的需求,还是从无线通信自身来考虑,都希望物理层支持非对称高速数据传输,而OFDM容易通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。

由于无线信道存在频率选择性,所有的子信道不会同时处于比较深的衰落情况中,因此可以通过动态比特分配以及动态子信道分配的方法,充分利用信噪比高的子信道,从而提升系统性能。由于窄带干扰只能影响一小部分子载波,因此OFDM系统在某种程度上抵抗这种干扰。


图1.2 OFDM系统结构框图

另外,同单载波系统相比,OFDM还存在一些缺点,易受频率偏差的影响,存在较高的PAR。

OFDM技术有非常广阔的发展前景,已成为第4带移动通信的核心技术。IEEE802.11a g标准为了支持高速数据传输都采用了OFDM调制技术。目前,OFDM结合时空编码、分集、干扰(包括符号间干扰ISI和邻道干扰ICI)抑制以及智能天线技术,最大程度的提高物理层的可靠性。如再结合自适应调制、自适应编码以及动态子载波分配、动态比特分配算法等技术,可以使其性能进一步优化。

 

 

2.4 MIMO OFDM技术

 

 

MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。它可以定义为发送端和接收端之间存在多个独立信道,也就是说天线单元之间存在充分的间隔,因此消除了天线间信号的相关性,提高信号的链路性能增加了数据吞吐量。


图1.3 MIMO系统原理框图

现代信息论表明:对于发射天线数为N,接收天线数为M的多入多出(MIMO)系统,假定信道为独立的瑞利衰落信道,并设N、M很大,则信道容量C近似为公式

(2.1)

(其中B为信号带宽,ρ为接收端平均信噪比,min(M,N)为M,N的较小者)。

上式表明,MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。研究表明,在瑞利衰落信道环境下,OFDM系统非常适合使用MIMO技术来提高容量。采用多输入多输出(MIMO)系统是提高频谱效率的有效方法。我们知道,多径衰落是影响通信质量的主要因素,但MIMO系统却能有效地利用多径的影响来提高系统容量。系统容量是干扰受限的,不能通过增加发射功率来提高系统容量。而采用MIMO结构不需要增加发射功率就能获得很高的系统容量。因此将MIMO技术与OFDM技术相结合是下一代无线局域网发展的趋势。

在OFDM系统中采用多发射天线实际上就是根据需要在各个子信道上应用多发射天线技术。每个子信道都对应一个多天线子系统。一个多发射天线的OFDM系统。目前正在开发的设备由2组IEEE802.11a收发器、发送天线和接收天线各2个(2×2)和负责运算处理过程的MIMO系统组成,能够实现最大108Mbit/秒的传输速度。支持AP和客户端之间的传输速度为108Mbit/秒,客户端不支持该技术时(IEEE802.11a客户端的情况),通信速度为54Mbit/秒。