使用Docker搭建Spark集群(用于实现网站流量实时分析模块)

  上一篇使用Docker搭建了Hadoop的完全分布式:使用Docker搭建Hadoop集群(伪分布式与完全分布式),本次记录搭建spark集群,使用两者同时来实现之前一直未完成的项目:网站日志流量分析系统(该系统目前用虚拟机实现了离线分析模块,实时分析由于资源问题尚未完成---这次spark集群用于该项目的实时分析)

一、根据架构图搭建基础环境

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第1张图片

  ①Scala版本:2.13以及JDK版本:1.8.231,scala下载地址:https://www.scala-lang.org/download/(安装过程略)

  ②Docker版本:Docker version 19.03.5,下载地址:https://docs.docker.com/install/linux/docker-ce/centos/(安装过程略)

  ③搭建zookeeper集群(版本:3.4.14),下载地址:http://mirror.bit.edu.cn/apache/zookeeper/

  ④搭建hadoop集群(版本:2.7.7),下载地址:https://archive.apache.org/dist/hadoop/common/

  ⑤安装flume(版本:1.9.0),下载地址:http://flume.apache.org/download.html

  ⑥搭建Kafka集群(版本:2.4.0),下载地址:http://kafka.apache.org/downloads

  ⑦搭建HBase集群(版本:0.98.17),下载地址:https://archive.apache.org/dist/hbase/

  ⑧搭建Spark集群(版本:2.4.4),下载地址:https://www.apache.org/dyn/closer.lua/spark/spark-2.4.4/spark-2.4.4-bin-hadoop2.7.tgz

 基于以上环境来搭建Spark集群,最终实现网站流量的实时分析(离线分析模块已完成)--------网站日志流量分析系统,鄙人使用6个容器来实现以上环境的搭建,如下所示

                                                                   使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第2张图片

二、启动容器并固定IP

  可参考鄙人博客使用Docker搭建Hadoop集群(伪分布式与完全分布式)里面有固定ip相关说明。

1、Dockerfile构建具备ssh的centos镜像

1.1编写Dockerfile

FROM centos

# 镜像的作者  
 MAINTAINER xiedong

# 安装openssh-server和sudo软件包,并且将sshd的UsePAM参数设置成no  
RUN yum install -y openssh-server sudo
RUN sed -i 's/UsePAM yes/UsePAM no/g' /etc/ssh/sshd_config
#安装openssh-clients
RUN yum  install -y openssh-clients

# 添加测试用户root,密码root,并且将此用户添加到sudoers里  
RUN echo "root:root" | chpasswd
RUN echo "root   ALL=(ALL)       ALL" >> /etc/sudoers
RUN ssh-keygen -t dsa -f /etc/ssh/ssh_host_dsa_key
RUN ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key
# 启动sshd服务并且暴露22端口  
RUN mkdir /var/run/sshd
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
Dockerfile

1.2构建镜像

docker build -t 'xd/centos-ssh' .    #注意别忘记末尾的点

2、Dockerfile构建具备JDK1.8的centos镜像

2.1编写Dockerfile

#基于上一个ssh镜像构建
FROM xd/centos-ssh    
#拷贝并解压jdk                                        
ADD jdk-8u231-linux-x64.tar.gz /usr/local/
RUN mv /usr/local/jdk1.8.0_231 /usr/local/jdk1.8
ENV JAVA_HOME /usr/local/jdk1.8
ENV PATH $JAVA_HOME/bin:$PATH
Dockerfile

2.2构建镜像

docker build -t 'xd/centos-jdk' .

3、查看构建镜像

 使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第3张图片 

4、Docker容器数据卷共享文件

  建议还是针对不同容器建立不同数据卷,鄙人为了方便,但是这样浪费空间了。

4.1 宿主机建立目录并上传软件

mkdir -p /home/container-softwares

4.2宿主机界面

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第4张图片

ps:runhosts.sh脚本用于配置hosts文件映射,后续需要ssh配置免密登录。

#!/bin/bash
echo 192.168.2.10       hadoop0 >> /etc/hosts
echo 192.168.2.11       hadoop1 >> /etc/hosts
echo 192.168.2.12       hadoop2 >> /etc/hosts

echo 192.168.2.20       spark0 >> /etc/hosts
echo 192.168.2.21       spark1 >> /etc/hosts
echo 192.168.2.22       spark2 >> /etc/hosts
runhosts.sh

5、启动容器并固定IP

   由于每次开机重启Docker、重启容器比较麻烦,所以弄一个脚本最好

 5.1容器初始化脚本(第一次执行)

#/bin/bash
#启动Docker
sudo systemctl restart docker
echo "Docker restarts successfully!"

#启动6个容器
#NameNode-zk-HBase-Flume
docker run --name hadoop0 --hostname hadoop0 -v /home/container-softwares:/home/container-softwares -d -P -p 50070:50070 -p 8088:8088 -p 2181:2181 xd/centos-jdk
echo "hadoop0 container start success====="
#DataNode--zk-HBase-Flume
docker run --name hadoop1 --hostname hadoop1 -v /home/container-softwares:/home/container-softwares -d -P xd/centos-jdk
echo "hadoop1 container start success====="
#DataNode-zk-HBase-Flume
docker run --name hadoop2 --hostname hadoop2 -v /home/container-softwares:/home/container-softwares -d -P  xd/centos-jdk
echo "hadoop2 container start success====="


#spark0-kafka节点
docker run --name spark0 --hostname spark0 -v /home/container-softwares:/home/container-softwares -d -P  xd/centos-jdk
echo "spark0 container start success======="
#spark1-kafka节点
docker run --name spark1 --hostname spark1 -v /home/container-softwares:/home/container-softwares -d -P  xd/centos-jdk
echo "spark1 container start success====="
#spark2-kafka节点
docker run --name spark2 --hostname spark2 -v /home/container-softwares:/home/container-softwares -d -P  xd/centos-jdk
echo "spark2 container start success====="


#固定IP========
#pipework下载
yum install -y wget bridge-utils unzip

#wget https://github.com/jpetazzo/pipework/archive/master.zip

unzip pipework-master-old.zip 
mv pipework-master pipework
cp -rp pipework/pipework /usr/local/bin/ -f 

#创建网络
brctl addbr br0
ip link set dev br0 up
ip addr add 192.168.2.1/24 dev br0
echo "网络创建完成正在固定IP"
pipework br0 hadoop0 192.168.2.10/24
pipework br0 hadoop1 192.168.2.11/24
pipework br0 hadoop2 192.168.2.12/24

pipework br0 spark0 192.168.2.20/24
pipework br0 spark1 192.168.2.21/24
pipework br0 spark2 192.168.2.22/24

echo "固定IP完成,正在测试"

for i in {10,11,12,20,21,22}
do
ips=192.168.2.$i
        result=`ping -w 2 -c 3 ${ips} | grep packet | awk -F" " '{print $6}'| awk -F"%" '{print $1}'| awk -F' ' '{print $1}'`
        if [ $result -eq 0 ]; then
                echo ""${ips}" is ok !"
        else
                echo ""${ips}" is not connected ....."
        fi

done

echo "测试完成"
Init初始化容器脚本

5.2 容器启动脚本(关机重启后执行)

  注:该脚本用于已经初始化过的容器

#/bin/bash
#启动Docker
sudo systemctl restart docker
echo "Docker restarts successfully!"

#启动6个容器
docker start hadoop0 hadoop1 hadoop2 spark0 spark1 spark2

#固定IP
brctl addbr br0
ip link set dev br0 up
ip addr add 192.168.2.1/24 dev br0

pipework br0 hadoop0 192.168.2.10/24
pipework br0 hadoop1 192.168.2.11/24
pipework br0 hadoop2 192.168.2.12/24

pipework br0 spark0 192.168.2.20/24
pipework br0 spark1 192.168.2.21/24
pipework br0 spark2 192.168.2.22/24

echo "固定IP完成,正在测试"

for i in {10,11,12,20,21,22}
do
ips=192.168.2.$i
        result=`ping -w 2 -c 3 ${ips} | grep packet | awk -F" " '{print $6}'| awk -F"%" '{print $1}'| awk -F' ' '{print $1}'`
        if [ $result -eq 0 ]; then
                echo ""${ips}" is ok !"
        else
                echo ""${ips}" is not connected ....."
        fi

done

echo "测试完成"
start启动脚本

5.3容器停止脚本

#/bin/bash
sudo docker stop hadoop0 hadoop1 hadoop2 spark0 spark1 spark2
echo "容器已停止"
systemctl stop docker 
echo "docker 服务已停"
stop停止脚本

5.4执行初始化脚本,出现以下界面说明成功

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第5张图片

三、基础环境搭建

1、搭建Zookeeper集群

  :根据之前的部署结构,Zookeeper搭建在hadoop0、hadoop1、hadoop2这3个容器,安装过程可参考鄙人之前博客:zookeeper集群的搭建,其中Zookeeper的相关安装包已经通过容器数据卷共享到容器内部路径:/home/container-softwares(可通过初始化脚本看出),最终实现效果如下:

1.1Hadoop0容器zk角色为leader

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第6张图片

 1.2Hadoop1容器zk角色为follower

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第7张图片

 1.3Hadoop2容器zk角色为follower

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第8张图片

2、搭建Hadoop集群

  :根据之前的部署结构,Hadoop集群搭建在hadoop0、hadoop1、hadoop2这3个容器,安装过程可参考鄙人之前博客:使用Docker搭建Hadoop集群(伪分布式与完全分布式),其中Hadoop的相关安装包已经通过容器数据卷共享到容器内部路径:/home/container-softwares(可通过初始化脚本看出),最终实现效果如下:

2.1Hadoop0容器有以下进程

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第9张图片

2.2Hadoop1容器有以下进程

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第10张图片 

2.3Hadoop2容器有以下进程

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第11张图片

3、搭建HBase集群

 :根据之前的部署结构,HBase搭建在hadoop0、hadoop1、hadoop2这3个容器(安装过程可参考鄙人之前博客:HBase的完全分布式搭建),此HBase集群主要服务于Spark实时分析产生的中间临时数据架构图中可查看,其中HBase的相关安装包已经通过容器数据卷共享到容器内部路径:/home/container-softwares(可通过初始化脚本看出),最终实现效果如下:

3.1Hadoop0容器有以下进程

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第12张图片

3.2Hadoop1容器有以下进程

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第13张图片

3.3Hadoop2容器有以下进程

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第14张图片

4、搭建Kafka集群

  :根据之前的部署结构,Kafka搭建在spark0、spark1、spark2这3个容器(安装过程可参考鄙人之前博客:Kakfa概述及安装过程),Kafka负责接收Flume中心服务器产生的数据并对接spark用于实时分析,其中Kafka的相关安装包已经通过容器数据卷共享到容器内部路径:/home/container-softwares(可通过初始化脚本看出),最终实现效果如下:

4.1Spark0容器有以下进程

4.2Spark1容器有以下进程

4.3Spark2容器有以下进程

5、安装Flume

  :根据之前的部署结构,Flume搭建在hadoop0、hadoop1、hadoop2这3个容器(安装过程可参考鄙人之前博客:Flume学习笔记),Hadoop0的flume作为架构图中的FlumeAgent、另外2个容器中的flume作为中心日志服务器落地HDFS以及Kafka消息队列,其中Flume的相关安装包已经通过容器数据卷共享到容器内部路径:/home/container-softwares(可通过初始化脚本看出),最终实现效果如下:

5.1Hadoop0容器的FlumeAgent相关配置

#声明Agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1

#声明source
a1.sources.r1.type = avro
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port =44444

a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = regex_extractor
a1.sources.r1.interceptors.i1.regex = ^(?:[^\\|]*\\|){14}\\d+_\\d+_(\\d+)\\|.*$
a1.sources.r1.interceptors.i1.serializers = s1
a1.sources.r1.interceptors.i1.serializers.s1.name = timestamp

#声明sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname =hadoop1
a1.sinks.k1.port =44444

a1.sinks.k2.type = avro
a1.sinks.k2.hostname =hadoop2
a1.sinks.k2.port =44444

a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = random

#声明channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

#绑定关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1
FlumeAgent

ps:负责收集应用程序产生的日志并通过负载均衡分发给2个中心日志服务器

5.2Hadoop1与Hadoop2容器的Flume中心日志服务器相关配置

#声明Agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
#声明source
a1.sources.r1.type = avro
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 44444
#声明sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop0:9000/logdemo/reportTime=%Y-%m-%d
a1.sinks.k1.hdfs.rollInterval = 30
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.timeZone = GMT+8
a1.sinks.k2.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k2.topic = fluxtopic
a1.sinks.k2.brokerList = spark0:9092,spark1:9092,spark2:9092
#声明channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
#绑定关系
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2
FlumeServer

ps:中心日志服务器负责接收FlumeAgent客户端日志并落地HDFS以及分发Kafka(2个容器的配置相同

6、搭建Spark集群

  搭建好以上环境后,开始搭建Spark环境

 :根据之前的部署结构,Spark搭建在spark0、spark1、spark2这3个容器,其中Spark的相关安装包已经通过容器数据卷共享到容器内部路径:/home/container-softwares(可通过初始化脚本看出

6.1配置环境变量

export SCALA_HOME=/usr/local/scala/scala-2.13.1
export PATH=$PATH:$SCALA_HOME/bin
export JAVA_HOME=/usr/local/jdk1.8
export SPARK_HOME=/home/softwares/spark-2.4.4-bin-hadoop2.7
export PATH=$PATH:$SPARK_HOME/bin
export CLASSPATH=.:$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/jre/lib

6.2修改配置文件spark-env.sh(增加以下配置)

cp spark-env.sh.template spark-env.sh
vim spark-env.sh
export JAVA_HOME=/usr/local/jdk1.8
export SCALA_HOME=/usr/local/scala/scala-2.13.1
export SPARK_MASTER_IP=192.168.2.20
export SPARK_WORKER_MEMORY=512m
export HADOOP_CONF_DIR=/home/softwares/hadoop-2.7.7/etc/hadoop

6.3编辑slaves

cp slaves.template slaves
vim slaves

#增加如下配置
spark0
spark1
spark2

6.4拷贝至其他2个容器

scp -rq spark-2.4.4-bin-hadoop2.7 spark1:/home/softwares/
scp -rq spark-2.4.4-bin-hadoop2.7 spark2:/home/softwares/

6.5启动spark集群

sbin目录执行:./start-all.sh

6.6spark0容器有以下进程

使用Docker搭建Spark集群(用于实现网站流量实时分析模块)_第15张图片

6.7spark0容器有以下进程

6.8spark0容器有以下进程

  至此、已经完成Spark集群的搭建,下一篇编写scala代码实现网站流量实时分析:Scala实现网站流量实时分析

你可能感兴趣的:(使用Docker搭建Spark集群(用于实现网站流量实时分析模块))