一、什么是拜占庭将军问题
拜占庭将军问题(Byzantine Generals Problem,是由莱斯利·兰波特在其同名论文[1]中提出的分布式对等网络通信容错问题。在分布式计算中,不同的计算机通过通讯交换信息达成共识而按照同一套协作策略行动。但有时候,系统中的成员计算机可能出错而发送错误的信息,用于传递信息的通讯网络也可能导致信息损坏,使得网络中不同的成员关于全体协作的策略得出不同结论,从而破坏系统一致性。拜占庭将军问题被认为是容错性问题中最难的问题类型之一。
莱斯利·兰波特在其论文中描述了如下问题:
一组拜占庭将军分别各率领一支军队共同围困一座城市。为了简化问题,将各支军队的行动策略限定为进攻或撤离两种。因为部分军队进攻部分军队撤离可能会造成灾难性后果,因此各位将军必须通过投票来达成一致策略,即所有军队一起进攻或所有军队一起撤离。因为各位将军分处城市不同方向,他们只能通过信使互相联系。在投票过程中每位将军都将自己投票给进攻还是撤退的信息通过信使分别通知其他所有将军,这样一来每位将军根据自己的投票和其他所有将军送来的信息就可以知道共同的投票结果而决定行动策略。
系统的问题在于,将军中可能出现叛徒,他们不仅可能向较为糟糕的策略投票,还可能选择性地发送投票信息。假设有9位将军投票,其中1名叛徒。8名忠诚的将军中出现了4人投进攻,4人投撤离的情况。这时候叛徒可能故意给4名投进攻的将领送信表示投票进攻,而给4名投撤离的将领送信表示投撤离。这样一来在4名投进攻的将领看来,投票结果是5人投进攻,从而发起进攻;而在4名投撤离的将军看来则是5人投撤离。这样各支军队的一致协同就遭到了破坏。
由于将军之间需要通过信使通讯,叛变将军可能通过伪造信件来以其他将军的身份发送假投票。而即使在保证所有将军忠诚的情况下,也不能排除信使被敌人截杀,甚至被敌人间谍替换等情况。因此很难通过保证人员可靠性及通讯可靠性来解决问题。
假始那些忠诚(或是没有出错)的将军仍然能通过多数决定来决定他们的战略,便称达到了拜占庭容错。在此,票都会有一个默认值,若消息(票)没有被收到,则使用此默认值来投票。
上述的故事映射到计算机系统里,将军便成了计算机,而信差就是通信系统。虽然上述的问题涉及了电子化的决策支持与信息安全,却没办法单纯的用密码学与数字签名来解决。因为不正常的电压仍可能影响整个加密过程,这不是密码学与数字签名算法在解决的问题。因此计算机就有可能将错误的结果提交去,亦可能导致错误的决策。在分布式对等网络中需要按照共同一致策略协作的成员计算机即为问题中的将军,而各成员计算机赖以进行通讯的网络链路即为信使。拜占庭将军问题描述的就是某些成员计算机或网络链路出现错误、甚至被蓄意破坏者控制的情况。
二、拜占庭将军问题解决方案
1. 问题分析
如何让忠诚的将军们能达成行动的一致。
对于拜占庭问题来说,假如节点总数为 N,叛变将军数为 F,则当N>=3F+1时,问题才有解,即 Byzantine Fault Tolerant (BFT) 算法。
例如,N=3,F=1 时。
提案人不是叛变者,提案人发送一个提案出来,叛变者可以宣称收到的是相反的命令。则对于第三个人(忠诚者)收到两个相反的消息,无法判断谁是叛变者,则系统无法达到一致。
提案人是叛变者,发送两个相反的提案分别给另外两人,另外两人都收到两个相反的消息,无法判断究竟谁是叛变者,则系统无法达到一致。
更一般的,当提案人不是叛变者,提案人提出提案信息 ,则对于合作者来看,系统中会有 N-F 份确定的信息1,和 F 份不确定的信息(可能为1或0,假设叛变者会尽量干扰一致的达成),N-F > F,即 N > 2F 情况下才能达成一致。
当提案人是叛变者,会尽量发送相反的提案给 N-F 个合作者,从收到1的合作者看来,系统中会存在 \(\frac{N-F}{2}\) 个信息1,以及\(\frac{N-F}{2}\)个信息0;从收到0的合作者看来,系统中会存在\(\frac{N-F}{2}\)个信息0,以及 \(\frac{N-F}{2}\)个信息1;
另外存在 F-1 个不确定的信息。合作者要想达成一致,必须进一步的对所获得的消息进行判定,询问其他人某个被怀疑对象的消息值,并通过取多数来作为被怀疑者的信息值。这个过程可以进一步递归下去。
Leslie Lamport 证明,当叛变者不超过 1/3 时,存在有效的算法,不论叛变者如何折腾,忠诚的将军们总能达成一致的结果。如果叛变者过多,则无法保证一定能达到一致性。
多于 1/3 的叛变者时有没有可能有解决方案呢?设想f个叛变者和g个忠诚者,叛变者故意使坏,可以给出错误的结果,也可以不响应。某个时候f个叛变者都不响应,则g个忠诚者取多数既能得到正确结果。当f个叛变者都给出一个恶意的提案,并且g个忠诚者中有f个离线时,剩下的 g-f 个忠诚者此时无法分别是否混入了叛变者,仍然要确保取多数能得到正确结果,因此,g-f > f,即 g > 2f,所以系统整体规模要大于3f。
能确保达成一致的拜占庭系统节点数至少为 4,允许出现 1 个坏的节点。
2. Byzantine Fault Tolerant 算法
面向拜占庭问题的容错算法,解决的是网络通信可靠,但节点可能故障情况下的一致性达成。
最早由 Castro 和 Liskov 在 1999 年提出的 Practical Byzantine Fault Tolerant(PBFT)是第一个得到广泛应用的 BFT 算法。只要系统中有 1/3 的节点是正常工作的,则可以保证一致性。
PBFT 算法包括三个阶段来达成共识:Pre-Prepare、Prepare 和 Commit。
3. 新的解决思路
拜占庭问题之所以难解,在于任何时候系统中都可能存在多个提案(因为提案成本很低),并且要完成最终的一致性确认过程十分困难,容易受干扰。但是一旦确认,即为最终确认。
比特币的区块链网络在设计时提出了创新的 PoW(Proof of Work)
算法思路。一个是限制一段时间内整个网络中出现提案的个数(增加提案成本),另外一个是放宽对最终一致性确认的需求,约定好大家都确认并沿着已知最长的链进行拓宽。系统的最终确认是概率意义上的存在。这样,即便有人试图恶意破坏,也会付出很大的经济代价(付出超过系统一半的算力)。
后来的各种共识系列算法,也都是沿着这个思路进行改进,采用经济上的惩罚来制约破坏者。