tensorflow开发API

tensorflow开发API

架构

Modules

  • app module: Generic entry point script.

  • bitwise module: Operations for manipulating the binary representations of integers.

  • compat module: Functions for Python 2 vs. 3 compatibility.

  • contrib module: contrib module containing volatile or experimental code.

  • data module: tf.data.Dataset API for input pipelines.

  • distributions module: Core module for TensorFlow distribution objects and helpers.

  • errors module: Exception types for TensorFlow errors.

  • estimator module: Estimator: High level tools for working with models.

  • feature_column module: FeatureColumns: tools for ingesting and representing features.

  • flags module: Implementation of the flags interface.

  • gfile module: Import router for file_io.

  • graph_util module: Helpers to manipulate a tensor graph in python.

  • image module: Image processing and decoding ops.

  • initializers module: Public API for tf.initializer namespace.

  • keras module: Implementation of the Keras API meant to be a high-level API for TensorFlow.

  • layers module: This library provides a set of high-level neural networks layers.

  • linalg module: Public API for tf.linalg namespace.

  • logging module: Logging utilities.

  • losses module: Loss operations for use in neural networks.

  • metrics module: Evaluation-related metrics.

  • nn module: Neural network support.

  • profiler module: profiler python module provides APIs to profile TensorFlow models.

  • python_io module: Python functions for directly manipulating TFRecord-formatted files.

  • pywrap_tensorflow module: A wrapper for TensorFlow SWIG-generated bindings.

  • resource_loader module: Resource management library.

  • saved_model module: Convenience functions to save a model.

  • sets module: Tensorflow set operations.

  • spectral module: Spectral operators (e.g. DCT, FFT, RFFT).

  • summary module: Tensor summaries for exporting information about a model.

  • sysconfig module: System configuration library.

  • test module: Testing.

  • tools module

  • train module: Support for training models.

  • user_ops module: All user ops.

Classes

  • class AggregationMethod: A class listing aggregation methods used to combine gradients.

  • class AttrValue

  • class ConditionalAccumulator: A conditional accumulator for aggregating gradients.

  • class ConditionalAccumulatorBase: A conditional accumulator for aggregating gradients.

  • class ConfigProto

  • class DType: Represents the type of the elements in a Tensor.

  • class DeviceSpec: Represents a (possibly partial) specification for a TensorFlow device.

  • class Dimension: Represents the value of one dimension in a TensorShape.

  • class Event

  • class FIFOQueue: A queue implementation that dequeues elements in first-in first-out order.

  • class FixedLenFeature: Configuration for parsing a fixed-length input feature.

  • class FixedLenSequenceFeature: Configuration for parsing a variable-length input feature into a Tensor.

  • class FixedLengthRecordReader: A Reader that outputs fixed-length records from a file.

  • class GPUOptions

  • class Graph: A TensorFlow computation, represented as a dataflow graph.

  • class GraphDef

  • class GraphKeys: Standard names to use for graph collections.

  • class GraphOptions

  • class HistogramProto

  • class IdentityReader: A Reader that outputs the queued work as both the key and value.

  • class IndexedSlices: A sparse representation of a set of tensor slices at given indices.

  • class InteractiveSession: A TensorFlow Session for use in interactive contexts, such as a shell.

  • class LMDBReader: A Reader that outputs the records from a LMDB file.

  • class LogMessage

  • class MetaGraphDef

  • class NameAttrList

  • class NodeDef

  • class OpError: A generic error that is raised when TensorFlow execution fails.

  • class Operation: Represents a graph node that performs computation on tensors.

  • class OptimizerOptions

  • class PaddingFIFOQueue: A FIFOQueue that supports batching variable-sized tensors by padding.

  • class PriorityQueue: A queue implementation that dequeues elements in prioritized order.

  • class QueueBase: Base class for queue implementations.

  • class RandomShuffleQueue: A queue implementation that dequeues elements in a random order.

  • class ReaderBase: Base class for different Reader types, that produce a record every step.

  • class RegisterGradient: A decorator for registering the gradient function for an op type.

  • class RunMetadata

  • class RunOptions

  • class Session: A class for running TensorFlow operations.

  • class SessionLog

  • class SparseConditionalAccumulator: A conditional accumulator for aggregating sparse gradients.

  • class SparseFeature: Configuration for parsing a sparse input feature from an Example.

  • class SparseTensor: Represents a sparse tensor.

  • class SparseTensorValue: SparseTensorValue(indices, values, dense_shape)

  • class Summary

  • class SummaryMetadata

  • class TFRecordReader: A Reader that outputs the records from a TFRecords file.

  • class Tensor: Represents one of the outputs of an Operation.

  • class TensorArray: Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.

  • class TensorInfo

  • class TensorShape: Represents the shape of a Tensor.

  • class TextLineReader: A Reader that outputs the lines of a file delimited by newlines.

  • class VarLenFeature: Configuration for parsing a variable-length input feature.

  • class Variable: See the Variables How To for a high level overview.

  • class VariableScope: Variable scope object to carry defaults to provide to get_variable.

  • class WholeFileReader: A Reader that outputs the entire contents of a file as a value.

  • class constant_initializer: Initializer that generates tensors with constant values.

  • class name_scope: A context manager for use when defining a Python op.

  • class ones_initializer: Initializer that generates tensors initialized to 1.

  • class orthogonal_initializer: Initializer that generates an orthogonal matrix.

  • class random_normal_initializer: Initializer that generates tensors with a normal distribution.

  • class random_uniform_initializer: Initializer that generates tensors with a uniform distribution.

  • class truncated_normal_initializer: Initializer that generates a truncated normal distribution.

  • class uniform_unit_scaling_initializer: Initializer that generates tensors without scaling variance.

  • class variable_scope: A context manager for defining ops that creates variables (layers).

  • class variance_scaling_initializer: Initializer capable of adapting its scale to the shape of weights tensors.

  • class zeros_initializer: Initializer that generates tensors initialized to 0.

Functions

  • Assert(...): Asserts that the given condition is true.

  • NoGradient(...): Specifies that ops of type op_type is not differentiable.

  • NotDifferentiable(...): Specifies that ops of type op_type is not differentiable.

  • Print(...): Prints a list of tensors.

  • abs(...): Computes the absolute value of a tensor.

  • accumulate_n(...): Returns the element-wise sum of a list of tensors.

  • acos(...): Computes acos of x element-wise.

  • acosh(...): Computes inverse hyperbolic cosine of x element-wise.

  • add(...): Returns x + y element-wise.

  • add_check_numerics_ops(...): Connect a check_numerics to every floating point tensor.

  • add_n(...): Adds all input tensors element-wise.

  • add_to_collection(...): Wrapper for Graph.add_to_collection() using the default graph.

  • all_variables(...): See tf.global_variables. (deprecated)

  • angle(...): Returns the argument of a complex number.

  • arg_max(...): Returns the index with the largest value across dimensions of a tensor. (deprecated)

  • arg_min(...): Returns the index with the smallest value across dimensions of a tensor. (deprecated)

  • argmax(...): Returns the index with the largest value across axes of a tensor. (deprecated arguments)

  • argmin(...): Returns the index with the smallest value across axes of a tensor. (deprecated arguments)

  • as_dtype(...): Converts the given type_value to a DType.

  • as_string(...): Converts each entry in the given tensor to strings. Supports many numeric

  • asin(...): Computes asin of x element-wise.

  • asinh(...): Computes inverse hyperbolic sine of x element-wise.

  • assert_equal(...): Assert the condition x == y holds element-wise.

  • assert_greater(...): Assert the condition x > y holds element-wise.

  • assert_greater_equal(...): Assert the condition x >= y holds element-wise.

  • assert_integer(...): Assert that x is of integer dtype.

  • assert_less(...): Assert the condition x < y holds element-wise.

  • assert_less_equal(...): Assert the condition x <= y holds element-wise.

  • assert_negative(...): Assert the condition x < 0 holds element-wise.

  • assert_non_negative(...): Assert the condition x >= 0 holds element-wise.

  • assert_non_positive(...): Assert the condition x <= 0 holds element-wise.

  • assert_none_equal(...): Assert the condition x != y holds for all elements.

  • assert_positive(...): Assert the condition x > 0 holds element-wise.

  • assert_proper_iterable(...): Static assert that values is a "proper" iterable.

  • assert_rank(...): Assert x has rank equal to rank.

  • assert_rank_at_least(...): Assert x has rank equal to rank or higher.

  • assert_rank_in(...): Assert x has rank in ranks.

  • assert_same_float_dtype(...): Validate and return float type based on tensors and dtype.

  • assert_scalar(...)

  • assert_type(...): Statically asserts that the given Tensor is of the specified type.

  • assert_variables_initialized(...): Returns an Op to check if variables are initialized.

  • assign(...): Update 'ref' by assigning 'value' to it.

  • assign_add(...): Update 'ref' by adding 'value' to it.

  • assign_sub(...): Update 'ref' by subtracting 'value' from it.

  • atan(...): Computes atan of x element-wise.

  • atan2(...): Computes arctangent of y/x element-wise, respecting signs of the arguments.

  • atanh(...): Computes inverse hyperbolic tangent of x element-wise.

  • batch_to_space(...): BatchToSpace for 4-D tensors of type T.

  • batch_to_space_nd(...): BatchToSpace for N-D tensors of type T.

  • betainc(...): Compute the regularized incomplete beta integral

  • .

  • bincount(...): Counts the number of occurrences of each value in an integer array.

  • bitcast(...): Bitcasts a tensor from one type to another without copying data.

  • boolean_mask(...): Apply boolean mask to tensor. Numpy equivalent is tensor[mask].

  • broadcast_dynamic_shape(...): Returns the broadcasted dynamic shape between shape_x and shape_y.

  • broadcast_static_shape(...): Returns the broadcasted static shape between shape_x and shape_y.

  • case(...): Create a case operation.

  • cast(...): Casts a tensor to a new type.

  • ceil(...): Returns element-wise smallest integer in not less than x.

  • check_numerics(...): Checks a tensor for NaN and Inf values.

  • cholesky(...): Computes the Cholesky decomposition of one or more square matrices.

  • cholesky_solve(...): Solves systems of linear eqns A X = RHS, given Cholesky factorizations.

  • clip_by_average_norm(...): Clips tensor values to a maximum average L2-norm.

  • clip_by_global_norm(...): Clips values of multiple tensors by the ratio of the sum of their norms.

  • clip_by_norm(...): Clips tensor values to a maximum L2-norm.

  • clip_by_value(...): Clips tensor values to a specified min and max.

  • colocate_with(...)

  • complex(...): Converts two real numbers to a complex number.

  • concat(...): Concatenates tensors along one dimension.

  • cond(...): Return true_fn() if the predicate pred is true else false_fn(). (deprecated arguments)

  • confusion_matrix(...): Computes the confusion matrix from predictions and labels.

  • conj(...): Returns the complex conjugate of a complex number.

  • constant(...): Creates a constant tensor.

  • container(...): Wrapper for Graph.container() using the default graph.

  • control_dependencies(...): Wrapper for Graph.control_dependencies() using the default graph.

  • convert_to_tensor(...): Converts the given value to a Tensor.

  • convert_to_tensor_or_indexed_slices(...): Converts the given object to a Tensor or an IndexedSlices.

  • convert_to_tensor_or_sparse_tensor(...): Converts value to a SparseTensor or Tensor.

  • cos(...): Computes cos of x element-wise.

  • cosh(...): Computes hyperbolic cosine of x element-wise.

  • count_nonzero(...): Computes number of nonzero elements across dimensions of a tensor.

  • count_up_to(...): Increments 'ref' until it reaches 'limit'.

  • create_partitioned_variables(...): Create a list of partitioned variables according to the given slicing.

  • cross(...): Compute the pairwise cross product.

  • cumprod(...): Compute the cumulative product of the tensor x along axis.

  • cumsum(...): Compute the cumulative sum of the tensor x along axis.

  • decode_base64(...): Decode web-safe base64-encoded strings.

  • decode_csv(...): Convert CSV records to tensors. Each column maps to one tensor.

  • decode_json_example(...): Convert JSON-encoded Example records to binary protocol buffer strings.

  • decode_raw(...): Reinterpret the bytes of a string as a vector of numbers.

  • delete_session_tensor(...): Delete the tensor for the given tensor handle.

  • depth_to_space(...): DepthToSpace for tensors of type T.

  • dequantize(...): Dequantize the 'input' tensor into a float Tensor.

  • deserialize_many_sparse(...): Deserialize and concatenate SparseTensors from a serialized minibatch.

  • device(...): Wrapper for Graph.device() using the default graph.

  • diag(...): Returns a diagonal tensor with a given diagonal values.

  • diag_part(...): Returns the diagonal part of the tensor.

  • digamma(...): Computes Psi, the derivative of Lgamma (the log of the absolute value of

  • div(...): Divides x / y elementwise (using Python 2 division operator semantics).

  • divide(...): Computes Python style division of x by y.

  • dynamic_partition(...): Partitions data into num_partitions tensors using indices from partitions.

  • dynamic_stitch(...): Interleave the values from the data tensors into a single tensor.

  • edit_distance(...): Computes the Levenshtein distance between sequences.

  • einsum(...): A generalized contraction between tensors of arbitrary dimension.

  • encode_base64(...): Encode strings into web-safe base64 format.

  • equal(...): Returns the truth value of (x == y) element-wise.

  • erf(...): Computes the Gauss error function of x element-wise.

  • erfc(...): Computes the complementary error function of x element-wise.

  • exp(...): Computes exponential of x element-wise.

  • .

  • expand_dims(...): Inserts a dimension of 1 into a tensor's shape.

  • expm1(...): Computes exponential of x - 1 element-wise.

  • extract_image_patches(...): Extract patches from images and put them in the "depth" output dimension.

  • eye(...): Construct an identity matrix, or a batch of matrices.

  • fake_quant_with_min_max_args(...): Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.

  • fake_quant_with_min_max_args_gradient(...): Compute gradients for a FakeQuantWithMinMaxArgs operation.

  • fake_quant_with_min_max_vars(...): Fake-quantize the 'inputs' tensor of type float via global float scalars min

  • fake_quant_with_min_max_vars_gradient(...): Compute gradients for a FakeQuantWithMinMaxVars operation.

  • fake_quant_with_min_max_vars_per_channel(...): Fake-quantize the 'inputs' tensor of type float and one of the shapes: [d],

  • fake_quant_with_min_max_vars_per_channel_gradient(...): Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.

  • fft(...): Fast Fourier transform.

  • fft2d(...): 2D fast Fourier transform.

  • fft3d(...): 3D fast Fourier transform.

  • fill(...): Creates a tensor filled with a scalar value.

  • fixed_size_partitioner(...): Partitioner to specify a fixed number of shards along given axis.

  • floor(...): Returns element-wise largest integer not greater than x.

  • floor_div(...): Returns x // y element-wise.

  • floordiv(...): Divides x / y elementwise, rounding toward the most negative integer.

  • floormod(...): Returns element-wise remainder of division. When x < 0 xor y < 0 is

  • foldl(...): foldl on the list of tensors unpacked from elems on dimension 0.

  • foldr(...): foldr on the list of tensors unpacked from elems on dimension 0.

  • gather(...): Gather slices from params axis axis according to indices.

  • gather_nd(...): Gather slices from params into a Tensor with shape specified by indices.

  • get_collection(...): Wrapper for Graph.get_collection() using the default graph.

  • get_collection_ref(...): Wrapper for Graph.get_collection_ref() using the default graph.

  • get_default_graph(...): Returns the default graph for the current thread.

  • get_default_session(...): Returns the default session for the current thread.

  • get_local_variable(...): Gets an existing local variable or creates a new one.

  • get_seed(...): Returns the local seeds an operation should use given an op-specific seed.

  • get_session_handle(...): Return the handle of data.

  • get_session_tensor(...): Get the tensor of type dtype by feeding a tensor handle.

  • get_variable(...): Gets an existing variable with these parameters or create a new one.

  • get_variable_scope(...): Returns the current variable scope.

  • global_norm(...): Computes the global norm of multiple tensors.

  • global_variables(...): Returns global variables.

  • global_variables_initializer(...): Returns an Op that initializes global variables.

  • glorot_normal_initializer(...): The Glorot normal initializer, also called Xavier normal initializer.

  • glorot_uniform_initializer(...): The Glorot uniform initializer, also called Xavier uniform initializer.

  • gradients(...): Constructs symbolic derivatives of sum of ys w.r.t. x in xs.

  • greater(...): Returns the truth value of (x > y) element-wise.

  • greater_equal(...): Returns the truth value of (x >= y) element-wise.

  • group(...): Create an op that groups multiple operations.

  • hessians(...): Constructs the Hessian of sum of ys with respect to x in xs.

  • histogram_fixed_width(...): Return histogram of values.

  • identity(...): Return a tensor with the same shape and contents as input.

  • identity_n(...): Returns a list of tensors with the same shapes and contents as the input

  • ifft(...): Inverse fast Fourier transform.

  • ifft2d(...): Inverse 2D fast Fourier transform.

  • ifft3d(...): Inverse 3D fast Fourier transform.

  • igamma(...): Compute the lower regularized incomplete Gamma function Q(a, x).

  • igammac(...): Compute the upper regularized incomplete Gamma function Q(a, x).

  • imag(...): Returns the imaginary part of a complex number.

  • import_graph_def(...): Imports the graph from graph_def into the current default Graph.

  • initialize_all_tables(...): Returns an Op that initializes all tables of the default graph. (deprecated)

  • initialize_all_variables(...): See tf.global_variables_initializer. (deprecated)

  • initialize_local_variables(...): See tf.local_variables_initializer. (deprecated)

  • initialize_variables(...): See tf.variables_initializer. (deprecated)

  • invert_permutation(...): Computes the inverse permutation of a tensor.

  • is_finite(...): Returns which elements of x are finite.

  • is_inf(...): Returns which elements of x are Inf.

  • is_nan(...): Returns which elements of x are NaN.

  • is_non_decreasing(...): Returns True if x is non-decreasing.

  • is_numeric_tensor(...)

  • is_strictly_increasing(...): Returns True if x is strictly increasing.

  • is_variable_initialized(...): Tests if a variable has been initialized.

  • lbeta(...): Computes

  • , reducing along the last dimension.

  • less(...): Returns the truth value of (x < y) element-wise.

  • less_equal(...): Returns the truth value of (x <= y) element-wise.

  • lgamma(...): Computes the log of the absolute value of Gamma(x) element-wise.

  • lin_space(...): Generates values in an interval.

  • linspace(...): Generates values in an interval.

  • load_file_system_library(...): Loads a TensorFlow plugin, containing file system implementation.

  • load_op_library(...): Loads a TensorFlow plugin, containing custom ops and kernels.

  • local_variables(...): Returns local variables.

  • local_variables_initializer(...): Returns an Op that initializes all local variables.

  • log(...): Computes natural logarithm of x element-wise.

  • log1p(...): Computes natural logarithm of (1 + x) element-wise.

  • log_sigmoid(...): Computes log sigmoid of x element-wise.

  • logical_and(...): Returns the truth value of x AND y element-wise.

  • logical_not(...): Returns the truth value of NOT x element-wise.

  • logical_or(...): Returns the truth value of x OR y element-wise.

  • logical_xor(...): x ^ y = (x | y) & ~(x & y).

  • make_ndarray(...): Create a numpy ndarray from a tensor.

  • make_template(...): Given an arbitrary function, wrap it so that it does variable sharing.

  • make_tensor_proto(...): Create a TensorProto.

  • map_fn(...): map on the list of tensors unpacked from elems on dimension 0.

  • matching_files(...): Returns the set of files matching one or more glob patterns.

  • matmul(...): Multiplies matrix a by matrix b, producing a * b.

  • matrix_band_part(...): Copy a tensor setting everything outside a central band in each innermost matrix

  • matrix_determinant(...): Computes the determinant of one or more square matrices.

  • matrix_diag(...): Returns a batched diagonal tensor with a given batched diagonal values.

  • matrix_diag_part(...): Returns the batched diagonal part of a batched tensor.

  • matrix_inverse(...): Computes the inverse of one or more square invertible matrices or their

  • matrix_set_diag(...): Returns a batched matrix tensor with new batched diagonal values.

  • matrix_solve(...): Solves systems of linear equations.

  • matrix_solve_ls(...): Solves one or more linear least-squares problems.

  • matrix_transpose(...): Transposes last two dimensions of tensor a.

  • matrix_triangular_solve(...): Solves systems of linear equations with upper or lower triangular matrices by

  • maximum(...): Returns the max of x and y (i.e. x > y ? x : y) element-wise.

  • meshgrid(...): Broadcasts parameters for evaluation on an N-D grid.

  • min_max_variable_partitioner(...): Partitioner to allocate minimum size per slice.

  • minimum(...): Returns the min of x and y (i.e. x < y ? x : y) element-wise.

  • mod(...): Returns element-wise remainder of division. When x < 0 xor y < 0 is

  • model_variables(...): Returns all variables in the MODEL_VARIABLES collection.

  • moving_average_variables(...): Returns all variables that maintain their moving averages.

  • multinomial(...): Draws samples from a multinomial distribution.

  • multiply(...): Returns x * y element-wise.

  • negative(...): Computes numerical negative value element-wise.

  • no_op(...): Does nothing. Only useful as a placeholder for control edges.

  • no_regularizer(...): Use this function to prevent regularization of variables.

  • norm(...): Computes the norm of vectors, matrices, and tensors.

  • not_equal(...): Returns the truth value of (x != y) element-wise.

  • one_hot(...): Returns a one-hot tensor.

  • ones(...): Creates a tensor with all elements set to 1.

  • ones_like(...): Creates a tensor with all elements set to 1.

  • op_scope(...): DEPRECATED. Same as name_scope above, just different argument order.

  • pad(...): Pads a tensor.

  • parallel_stack(...): Stacks a list of rank-R tensors into one rank-(R+1) tensor in parallel.

  • parse_example(...): Parses Example protos into a dict of tensors.

  • parse_single_example(...): Parses a single Example proto.

  • parse_single_sequence_example(...): Parses a single SequenceExample proto.

  • parse_tensor(...): Transforms a serialized tensorflow.TensorProto proto into a Tensor.

  • placeholder(...): Inserts a placeholder for a tensor that will be always fed.

  • placeholder_with_default(...): A placeholder op that passes through input when its output is not fed.

  • polygamma(...): Compute the polygamma function

  • .

  • pow(...): Computes the power of one value to another.

  • py_func(...): Wraps a python function and uses it as a TensorFlow op.

  • qr(...): Computes the QR decompositions of one or more matrices.

  • quantize_v2(...): Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.

  • quantized_concat(...): Concatenates quantized tensors along one dimension.

  • random_crop(...): Randomly crops a tensor to a given size.

  • random_gamma(...): Draws shape samples from each of the given Gamma distribution(s).

  • random_normal(...): Outputs random values from a normal distribution.

  • random_poisson(...): Draws shape samples from each of the given Poisson distribution(s).

  • random_shuffle(...): Randomly shuffles a tensor along its first dimension.

  • random_uniform(...): Outputs random values from a uniform distribution.

  • range(...): Creates a sequence of numbers.

  • rank(...): Returns the rank of a tensor.

  • read_file(...): Reads and outputs the entire contents of the input filename.

  • real(...): Returns the real part of a complex number.

  • realdiv(...): Returns x / y element-wise for real types.

  • reciprocal(...): Computes the reciprocal of x element-wise.

  • reduce_all(...): Computes the "logical and" of elements across dimensions of a tensor.

  • reduce_any(...): Computes the "logical or" of elements across dimensions of a tensor.

  • reduce_join(...): Joins a string Tensor across the given dimensions.

  • reduce_logsumexp(...): Computes log(sum(exp(elements across dimensions of a tensor))).

  • reduce_max(...): Computes the maximum of elements across dimensions of a tensor.

  • reduce_mean(...): Computes the mean of elements across dimensions of a tensor.

  • reduce_min(...): Computes the minimum of elements across dimensions of a tensor.

  • reduce_prod(...): Computes the product of elements across dimensions of a tensor.

  • reduce_sum(...): Computes the sum of elements across dimensions of a tensor.

  • register_tensor_conversion_function(...): Registers a function for converting objects of base_type to Tensor.

  • report_uninitialized_variables(...): Adds ops to list the names of uninitialized variables.

  • required_space_to_batch_paddings(...): Calculate padding required to make block_shape divide input_shape.

  • reset_default_graph(...): Clears the default graph stack and resets the global default graph.

  • reshape(...): Reshapes a tensor.

  • reverse(...): Reverses specific dimensions of a tensor.

  • reverse_sequence(...): Reverses variable length slices.

  • reverse_v2(...): Reverses specific dimensions of a tensor.

  • rint(...): Returns element-wise integer closest to x.

  • round(...): Rounds the values of a tensor to the nearest integer, element-wise.

  • rsqrt(...): Computes reciprocal of square root of x element-wise.

  • saturate_cast(...): Performs a safe saturating cast of value to dtype.

  • scalar_mul(...): Multiplies a scalar times a Tensor or IndexedSlices object.

  • scan(...): scan on the list of tensors unpacked from elems on dimension 0.

  • scatter_add(...): Adds sparse updates to a variable reference.

  • scatter_div(...): Divides a variable reference by sparse updates.

  • scatter_mul(...): Multiplies sparse updates into a variable reference.

  • scatter_nd(...): Scatter updates into a new (initially zero) tensor according to indices.

  • scatter_nd_add(...): Applies sparse addition between updates and individual values or slices

  • scatter_nd_sub(...): Applies sparse subtraction between updates and individual values or slices

  • scatter_nd_update(...): Applies sparse updates to individual values or slices within a given

  • scatter_sub(...): Subtracts sparse updates to a variable reference.

  • scatter_update(...): Applies sparse updates to a variable reference.

  • segment_max(...): Computes the maximum along segments of a tensor.

  • segment_mean(...): Computes the mean along segments of a tensor.

  • segment_min(...): Computes the minimum along segments of a tensor.

  • segment_prod(...): Computes the product along segments of a tensor.

  • segment_sum(...): Computes the sum along segments of a tensor.

  • self_adjoint_eig(...): Computes the eigen decomposition of a batch of self-adjoint matrices.

  • self_adjoint_eigvals(...): Computes the eigenvalues of one or more self-adjoint matrices.

  • sequence_mask(...): Returns a mask tensor representing the first N positions of each cell.

  • serialize_many_sparse(...): Serialize an N-minibatch SparseTensor into an [N, 3] string Tensor.

  • serialize_sparse(...): Serialize a SparseTensor into a string 3-vector (1-D Tensor) object.

  • serialize_tensor(...): Transforms a Tensor into a serialized TensorProto proto.

  • set_random_seed(...): Sets the graph-level random seed.

  • setdiff1d(...): Computes the difference between two lists of numbers or strings.

  • shape(...): Returns the shape of a tensor.

  • shape_n(...): Returns shape of tensors.

  • sigmoid(...): Computes sigmoid of x element-wise.

  • sign(...): Returns an element-wise indication of the sign of a number.

  • sin(...): Computes sin of x element-wise.

  • sinh(...): Computes hyperbolic sine of x element-wise.

  • size(...): Returns the size of a tensor.

  • slice(...): Extracts a slice from a tensor.

  • space_to_batch(...): SpaceToBatch for 4-D tensors of type T.

  • space_to_batch_nd(...): SpaceToBatch for N-D tensors of type T.

  • space_to_depth(...): SpaceToDepth for tensors of type T.

  • sparse_add(...): Adds two tensors, at least one of each is a SparseTensor.

  • sparse_concat(...): Concatenates a list of SparseTensor along the specified dimension.

  • sparse_fill_empty_rows(...): Fills empty rows in the input 2-D SparseTensor with a default value.

  • sparse_mask(...): Masks elements of IndexedSlices.

  • sparse_matmul(...): Multiply matrix "a" by matrix "b".

  • sparse_maximum(...): Returns the element-wise max of two SparseTensors.

  • sparse_merge(...): Combines a batch of feature ids and values into a single SparseTensor.

  • sparse_minimum(...): Returns the element-wise min of two SparseTensors.

  • sparse_placeholder(...): Inserts a placeholder for a sparse tensor that will be always fed.

  • sparse_reduce_max(...): Computes the max of elements across dimensions of a SparseTensor.

  • sparse_reduce_max_sparse(...): Computes the max of elements across dimensions of a SparseTensor.

  • sparse_reduce_sum(...): Computes the sum of elements across dimensions of a SparseTensor.

  • sparse_reduce_sum_sparse(...): Computes the sum of elements across dimensions of a SparseTensor.

  • sparse_reorder(...): Reorders a SparseTensor into the canonical, row-major ordering.

  • sparse_reset_shape(...): Resets the shape of a SparseTensor with indices and values unchanged.

  • sparse_reshape(...): Reshapes a SparseTensor to represent values in a new dense shape.

  • sparse_retain(...): Retains specified non-empty values within a SparseTensor.

  • sparse_segment_mean(...): Computes the mean along sparse segments of a tensor.

  • sparse_segment_sqrt_n(...): Computes the sum along sparse segments of a tensor divided by the sqrt of N.

  • sparse_segment_sum(...): Computes the sum along sparse segments of a tensor.

  • sparse_slice(...): Slice a SparseTensor based on the start and `size.

  • sparse_softmax(...): Applies softmax to a batched N-D SparseTensor.

  • sparse_split(...): Split a SparseTensor into num_split tensors along axis.

  • sparse_tensor_dense_matmul(...): Multiply SparseTensor (of rank 2) "A" by dense matrix "B".

  • sparse_tensor_to_dense(...): Converts a SparseTensor into a dense tensor.

  • sparse_to_dense(...): Converts a sparse representation into a dense tensor.

  • sparse_to_indicator(...): Converts a SparseTensor of ids into a dense bool indicator tensor.

  • sparse_transpose(...): Transposes a SparseTensor

  • split(...): Splits a tensor into sub tensors.

  • sqrt(...): Computes square root of x element-wise.

  • square(...): Computes square of x element-wise.

  • squared_difference(...): Returns (x - y)(x - y) element-wise.

  • squeeze(...): Removes dimensions of size 1 from the shape of a tensor.

  • stack(...): Stacks a list of rank-R tensors into one rank-(R+1) tensor.

  • stop_gradient(...): Stops gradient computation.

  • strided_slice(...): Extracts a strided slice of a tensor (generalized python array indexing).

  • string_join(...): Joins the strings in the given list of string tensors into one tensor;

  • string_split(...): Split elements of source based on delimiter into a SparseTensor.

  • string_to_hash_bucket(...): Converts each string in the input Tensor to its hash mod by a number of buckets.

  • string_to_hash_bucket_fast(...): Converts each string in the input Tensor to its hash mod by a number of buckets.

  • string_to_hash_bucket_strong(...): Converts each string in the input Tensor to its hash mod by a number of buckets.

  • string_to_number(...): Converts each string in the input Tensor to the specified numeric type.

  • substr(...): Return substrings from Tensor of strings.

  • subtract(...): Returns x - y element-wise.

  • svd(...): Computes the singular value decompositions of one or more matrices.

  • tables_initializer(...): Returns an Op that initializes all tables of the default graph.

  • tan(...): Computes tan of x element-wise.

  • tanh(...): Computes hyperbolic tangent of x element-wise.

  • tensordot(...): Tensor contraction of a and b along specified axes.

  • tile(...): Constructs a tensor by tiling a given tensor.

  • to_bfloat16(...): Casts a tensor to type bfloat16.

  • to_double(...): Casts a tensor to type float64.

  • to_float(...): Casts a tensor to type float32.

  • to_int32(...): Casts a tensor to type int32.

  • to_int64(...): Casts a tensor to type int64.

  • trace(...): Compute the trace of a tensor x.

  • trainable_variables(...): Returns all variables created with trainable=True.

  • transpose(...): Transposes a. Permutes the dimensions according to perm.

  • truediv(...): Divides x / y elementwise (using Python 3 division operator semantics).

  • truncated_normal(...): Outputs random values from a truncated normal distribution.

  • truncatediv(...): Returns x / y element-wise for integer types.

  • truncatemod(...): Returns element-wise remainder of division. This emulates C semantics in that

  • tuple(...): Group tensors together.

  • unique(...): Finds unique elements in a 1-D tensor.

  • unique_with_counts(...): Finds unique elements in a 1-D tensor.

  • unsorted_segment_max(...): Computes the Max along segments of a tensor.

  • unsorted_segment_sum(...): Computes the sum along segments of a tensor.

  • unstack(...): Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.

  • variable_axis_size_partitioner(...): Get a partitioner for VariableScope to keep shards below max_shard_bytes.

  • variable_op_scope(...): Deprecated: context manager for defining an op that creates variables.

  • variables_initializer(...): Returns an Op that initializes a list of variables.

  • verify_tensor_all_finite(...): Assert that the tensor does not contain any NaN's or Inf's.

  • where(...): Return the elements, either from x or y, depending on the condition.

  • while_loop(...): Repeat body while the condition cond is true.

  • write_file(...): Writes contents to the file at input filename. Creates file and recursively

  • zeros(...): Creates a tensor with all elements set to zero.

  • zeros_like(...): Creates a tensor with all elements set to zero.

  • zeta(...): Compute the Hurwitz zeta function
    .

Other Members

  • AUTO_REUSE

  • COMPILER_VERSION

  • GIT_VERSION

  • GRAPH_DEF_VERSION

  • GRAPH_DEF_VERSION_MIN_CONSUMER

  • GRAPH_DEF_VERSION_MIN_PRODUCER

  • QUANTIZED_DTYPES

  • VERSION

  • compiler_version

  • git_version

  • version

  • bfloat16

  • bool

  • complex128

  • complex64

  • double

  • float16

  • float32

  • float64

  • half

  • int16

  • int32

  • int64

  • int8

  • newaxis

  • qint16

  • qint32

  • qint8

  • quint16

  • quint8

  • resource

  • string

  • uint16

  • uint8

  • variant


sennchi

你可能感兴趣的:(tensorflow开发API)