Hadoop实例之Java代码实现利用MapReduce求π值

需求:假如有一个边长为1的正方形。以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形。在正方形里随机生成若干的点,则有些点是在扇形内,有些点是在扇形外。正方形的面积是1,扇形的面积是0.25*Pi。设点的数量一共是n,扇形内的点数量是nc,在点足够多足够密集的情况下,会近似有nc/n的比值约等于扇形面积与正方形面积的比值,也就是nc/n= 0.25*Pi/1,即Pi = 4*nc/n

首先是随机生成点的问题,利用Halton序列算法随机生成的样本点十分均匀,计算精度较高,效果比较好。

下面是网上找到的一个利用Halton序列算法随机生成的样本点的代码:

 

public class Pi {
    static int digit = 40;
    private int[] bases= new int[2];
    private double[] baseDigit = new double[2];
    private double[][] background = new double[2][digit];
    private long index;
    
    Pi(int[] base) {
        bases = base.clone();
        index = 0;
 
        for(int i=0; i) {
            double b = 1.0/bases[i];
            baseDigit[i] = b;
            for(int j=0; j) {
                background[i][j] = j == 0 ? b : background[i][j-1]*b;
            }
        }
    }
    
    double[] getNext() {
        index++;
        
        double[] result = {0,0};
 
        for(int i=0; i) {
            long num = index;
            int j = 0;
            while(num != 0) {
                result[i] += num % bases[i] * background[i][j++];
                num /= bases[i];
            }
        }
        
        return result;
    }
    
    public static void main(String[] args) {
        int[] base = {2,5};
        Pi test = new Pi(base);
        for(int x = 0; x < 100; x++){
            double[] t = test.getNext();
            System.out.println(t[0] + "\t" + t[1]);
        }
        
    }


}

 

下面是计算π值的代码:

package mapreduce;

import java.io.IOException;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import mapreduce.Pi;//下面生成随机数的时候需要这个类,该类即上面那部分代码

/**
 * 
 * @author sakura
 * 2019.9.3
 * 利用MapReduce计算π值
 *
 */
public class CalPI {
    public static class PiMapper extends Mapper{

        int number=0; //定义一个变量,用来存放一共生成的点数
        
        //读取文件,每一行都是一个map 本程序读取的文件为十行,每行都是100000
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            int pointNum = Integer.parseInt(value.toString());//将读取到的那一行赋值给pointNum
            number=number+pointNum;//将总点数赋值给number
             int[] base = {2,5};//生成随机点所用
            Pi test = new Pi(base);//生成随机点所用
            for(int x = 0; x < number; x++){ //循环生成随机点
                double[] t = test.getNext();//随机生成点,并将坐标存入数组
                System.out.println(t[0] + "\t" + t[1]);//控制台输出随机点的坐标
                IntWritable result = new IntWritable(0); //定义输出值
                if((t[0]*t[0]+t[1]*t[1])<=1)//判断生成的点是否在扇形面积内
                {
                    result = new IntWritable(1);//如果在,将输出值赋值为1
                }
                value.set(String.valueOf(number));//定义输出键,输出键为当前生成点的总数
                context.write(value, result);//写入
            }
        }
    }

    public static class PiReducer extends Reducer {
        private DoubleWritable result = new DoubleWritable();//声明输出值

        public void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {

            double pointNum =Double.parseDouble(key.toString());//获取输入的键
            double sum = 0;//定义总数
            for (IntWritable val : values) {//循环从values里取值,累加和赋值给sum
                sum += val.get();
            }
            result.set(sum/pointNum*4);//将计算得到的π值赋值给result
            
            context.write(key, result);//将键值,即生成点总数,和result,即计算得到的π值作为一个键值对写入context
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf,"calculate pi");
        job.setJarByClass(CalPI.class);
        job.setMapperClass(PiMapper.class);
        job.setReducerClass(PiReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DoubleWritable.class);

        Path  in  =  new  Path("hdfs://192.168.68.130:9000/user/hadoop/nai.txt");  //读入文件地址
        Path  out  = new Path("hdfs://192.168.68.130:9000/user/hadoop/output4");  //输出文件地址,output4不能存在
        FileInputFormat.addInputPath(job, in);
        FileOutputFormat.setOutputPath(job, out);
        System.exit(job.waitForCompletion(true) ? 0  :  1);  
  
    }


}

 

你可能感兴趣的:(Hadoop实例之Java代码实现利用MapReduce求π值)