基础篇(三)——栈与队列

栈是限定仅在表尾进行插入和删除操作的线性表。

队列是只允许在一端进行插入操作、而在另一端进行删除操作的线性表。

基础篇(三)——栈与队列_第1张图片

一、栈的定义

栈是限定仅在表尾进行插入和删除操作的线性表。
允许插入和删除的一端称为栈顶,另一端称为栈底,不含任何数据元素的栈称为空栈。栈又称为后进先出的线性表,简称LIFO结构。

栈的插入操作,叫作进栈,也称为压栈、入栈。
栈的删除操作,叫作出栈,也有的叫作弹栈。

二、栈的顺序存储结构

进栈操作

Status Push(SqStack *S, SElemType e)
{
  if(S->top==MAXSIZE-1)  /*栈满*/
   {
   return ERROR;
   }
   S->top++;  /*栈顶指针增加1*/
   S->data[S->top]=e;/*将新插入元素赋值给栈顶空间*/
   return OK;
}

出栈操作

Status Pop(SqStack *S, SElemType e)
{
  if(S->top==-1)  
   return ERROR;
  *e= S->data[S->top];/*将要删除的栈顶元素赋值给e*/
  S->top--;
  return OK;
}

三、栈的链式存储结构

进栈操作

对于链栈的进栈push操作,假设元素值为e的新结点是s,top为栈顶指针,示例代码如下:

Status Push(LinkStack *S, SElemType e)
{
   LinkStackPtr s=(LinkStackPtr) malloc (sizeof(StackNode));
   s->data=e;
   s->next=S->top;/*把当前的栈顶元素赋值给新结点的直接后继*/
   S->top=s;/*将新的结点s赋值给栈顶指针*/
   S->count++;
   return OK;
}

出栈操作

假设变量p用来存储要删除的栈顶结点,将栈顶指针下移一位,最后释放p即可。

Status Pop(LinkStack *S, SElemType e)
{
   LinkStackPtr p;
   if(StackEmpty(*S))
     return ERROR;
   *e=S->top->data;
   p=S->top;
   S->top= S->top->next;
   free(p);
   S->count--;
   return OK;
}
对比一下顺序栈和链栈,它们在空间复杂度上是一样的,均为O(1)。对于空间性能,顺序栈需要事先确定一个固定的长度,可能会存在内存空间浪费的问题,但它的优势是存取时定位很方便,而链栈则要求每个元素都有指针域,这同时也增加了一些内存开销,但对于栈的长度无限制。如果栈的使用过程中元素变化不可预料,有时很小,有时很大,那么最好使用链栈,反之,如果它的变化在可控制的范围内,使用顺序栈会好些。

四、队列的定义

队列是只允许在一端进行插入操作、而在另一端进行删除操作的线性表。
队列是一种先进先出的线性表,简称FIFO。允许插入的一端称为队尾,允许删除的一端称为队头。

五、循环队列

把队列的头尾相接的顺序存储结构称为循环队列。

与栈不同的是,队列元素的出列是在队头,即下标为0的位置,那也就意味着,队列中的所有元素都得向前移动,以保证队列的队头,也就是下标为0的位置不为空,此时时间复杂度为O(n)。

But

为什么出队列时一定要全部移动呢?如果不去限制队列的元素必须存储在数组的前n个单元这一条件,出队的性能就会大大增加。也就是说,队头不需要一定在下标为0的位置,如下图所示:


基础篇(三)——栈与队列_第2张图片

为了避免当只有一个元素时,队头和队尾重合使处理变得麻烦,所以引入两个指针,front指针指向队头元素,rear指针指向队尾元素的下一个位置,这样当front等于rear时,此队列不是还剩一个元素,而是空队列。

循环队列如下所示:


基础篇(三)——栈与队列_第3张图片

刚才说:front等于rear时是空队列,现在当队列满时,也是front等于rear,那么如何判断队列是空还是满呢?
办法一:设置一个标志变量flag,当front==rear,且flag=0时为队列空,当front==rear,且flag=1时为队列满。
方法二:当队列空时,条件就是front==rear,当队列满时,我们修改其条件,保留一个元素空间。也就是说,队列满时,数组中还有一个空闲单元,如图所示,就认为此队列已经满了。

基础篇(三)——栈与队列_第4张图片

此时通用的计算队列长度公式为:
(rear-front+QueueSize)%QueueSize

六、队列的链式存储结构

队列的链式存储结构,其实就是线性表的单链表,只不过它只能尾进头出而已。简称为链队列。为了操作方便,将队头指针指向链队列的头结点,而队尾指针指向终端结点,如下所示:

基础篇(三)——栈与队列_第5张图片

空队列时,front和rear都指向头结点。

循环队列和链队列的比较:

时间上:它们的基本操作都是常数时间,即都为O(1)的,不过循环队列是事先申请好空间,使用期间不释放,而对于链队列,每次申请和释放结点会存在一些时间开销,如果入队出队频繁,则两者还是会有差异。
空间上:循环队列必须有一个固定的长度,所以就有了存储元素个数和空间浪费的问题。而链队列不存在这个问题,尽管它需要一个指针域,会产生一些空间上的开销,但也可以接受。所以在空间上,链队列更加灵活。

总而言之,在可以确定队列长度最大值的情况下,建议用循环队列,如果你无法预估队列的长度时,则用链队列。

你可能感兴趣的:(基础篇(三)——栈与队列)