\(\Large\textbf{Description:} \large {在有向图 G 中,每条边的长度均为 1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:}\)
\(\large {1.路径上的所有点的出边所指向的点都直接或间接与终点连通。}\)
\(\large {2.在满足条件11的情况下使路径最短。}\)
\(\Large\textbf{Solution:} \large {考虑反向建边,然后从终点开始遍历一遍图,把符合条件的点打上标记,再从终点开始跑一边bfs即可。}\)
\(\Large\textbf{Code:}\)
#include
#include
#include
#define LL long long
#define gc() getchar()
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
using namespace std;
const int N = 2e5 + 5;
int n, m, cnt, s, t, ans, in[10005], head[10005], vis[1005], f[10005];
struct Edge {
int to, next;
}e[N << 1];
struct Node {
int num, dis;
};
queue q;
inline int read() {
char ch = gc();
int ans = 0;
while (ch > '9' || ch < '0') ch = gc();
while (ch >= '0' && ch <= '9') ans = (ans << 1) + (ans << 3) + ch - '0', ch = gc();
return ans;
}
inline void add(int l, int r) {
e[++cnt].to = r;
e[cnt].next = head[l];
head[l] = cnt;
}
inline void dfs(int now) {
f[now] = 1;
for (int i = head[now]; i ; i = e[i].next) {
int u = e[i].to;
++vis[u];
if (f[u]) continue;
dfs(u);
}
}
int main() {
n = read(), m = read();
int l, r;
rep(i, 1, m) l = read(), r = read(), add(r, l), ++in[l];
s = read(), t = read();
dfs(t);
rep(i, 1, n) { f[i] = 0; if (in[i] == vis[i]) f[i] = 1; in[i] = 0; }
q.push((Node){t, 0});
while (!q.empty()) {
Node x = q.front();
q.pop();
for (int i = head[x.num]; i ; i = e[i].next) {
int u = e[i].to;
if (in[u] || !f[u]) continue;
if (u == s) { printf("%d\n", x.dis + 1); return 0; }
else q.push((Node){u, x.dis + 1});
}
}
printf("-1\n");
return 0;
}
\(\large\color{pink}{by\quad Miraclys}\)