spark实验(四)--RDD编程(1)

一、实验目的
(1)熟悉 Spark 的 RDD 基本操作及键值对操作;

(2)熟悉使用 RDD 编程解决实际具体问题的方法。


二、实验平台
操作系统:centos6.4

Spark 版本:1.5.0

 

三、实验内容

实验一:

1.spark-shell 交互式编程

 请到本教程官网的“下载专区”的“数据集”中下载 chapter5-data1.txt,该数据集包含 了某大学计算机系的成绩,数据格式如下所示: 

spark实验(四)--RDD编程(1)_第1张图片

 首先开始我们的第一步,打开linux系统中的终端。

请根据给定的实验数据,在 spark-shell 中通过编程来计算以下内容:

将Data01.txt文件放置在usr/local/sparkdata/中

新建/usr/local/sparkdata文件夹

mkdir /usr/local/sparkdata 

spark实验(四)--RDD编程(1)_第2张图片

 

将Data01.txt文件放置在sparkdata中

发现权限不够,给/usr/local/sparkdata赋予操作权限

chmod 777 /usr/local/spakrdata

之后将Data01.txt文件移动到sparkdata中

 

 spark实验(四)--RDD编程(1)_第3张图片

 

 

 

(1)该系总共有多少学生; 

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
val par = lines.map(row=>row.split(",")(0))
val distinct_par = par.distinct()
distinct_par.count

spark实验(四)--RDD编程(1)_第4张图片

 

 

(2)该系共开设来多少门课程;

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
val par = lines.map(row=>row.split(",")(1))
val distinct_par = par.distinct()
distinct_par.count

spark实验(四)--RDD编程(1)_第5张图片

 

 

 

(3)Tom 同学的总成绩平均分是多少;

 

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
lines.filter(row=>row.split(",")(0)=="Tom")
.map(row=>(row.split(",")(0),row.split(",")(2).toInt))
.mapValues(x=>(x,1)).
reduceByKey((x,y) => (x._1+y._1,x._2 + y._2))
.mapValues(x => (x._1 / x._2))
.collect()

spark实验(四)--RDD编程(1)_第6张图片

 spark实验(四)--RDD编程(1)_第7张图片

 

 

(4)求每名同学的选修的课程门数;

val line=sc.textFile("file:///usr/local/sparkdata/Data01.txt")

line.map(row=>(row.split(",")(0),row.split(",")(1))).

mapValues(x=>(1)).

reduceByKey((x,y)=>(x+y)).

collect()

spark实验(四)--RDD编程(1)_第8张图片

 

 

(5)该系 DataBase 课程共有多少人选修;

val line=sc.textFile("file:///usr/local/sparkdata/Data01.txt")

line.filter(row=>row.split(",")(1)=="DataBase").

count()

 

 

 

 

 

 

 

(6)各门课程的平均分是多少;

val line=sc.textFile("file:///usr/local/sparkdata/Data01.txt")

line.map(row=>(row.split(",")(1),row.split(",")(2).toInt)).

mapValues(x=>(x,1)).

reduceByKey((x,y)=>(x._1+y._1,x._2+y._2)).

mapValues(x=>(x._1/x._2)).

collect()

spark实验(四)--RDD编程(1)_第9张图片

 

 

 

(7)使用累加器计算共有多少人选了 DataBase 这门课。 

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase").
map(row=>(row.split(",")(1),1))
val accum =sc.accumulator(0)
pare.values.foreach(x => accum.add(x))
accum.value

spark实验(四)--RDD编程(1)_第10张图片

 

 

实验二

2.编写独立应用程序实现数据去重
对于两个输入文件 A 和 B,编写 Spark 独立应用程序,对两个文件进行合并,并剔除其 中重复的内容,得到一个新文件 C。下面是输入文件和输出文件的一个样例,供参考。 输入文件 A 的样例如下:

20170101 x

20170102 y

20170103 x

20170104 y

20170105 z

20170106 z

输入文件 B 的样例如下:

20170101 y

20170102 y

20170103 x

20170104 z

20170105 y

根据输入的文件 A 和 B 合并得到的输出文件 C 的样例如下:

20170101 x

20170101 y

20170102 y

20170103 x

20170104 y

20170104 z

20170105 y

20170105 z

20170106 z

 

未完待续

 

实验三

3.编写独立应用程序实现求平均值问题
每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生 名字,第二个是学生的成绩;编写 Spark 独立应用程序求出所有学生的平均成绩,并输出到 一个新文件中。下面是输入文件和输出文件的一个样例,供参考。

Algorithm 成绩:

小明 92

小红 87

小新 82

小丽 90

Database 成绩:

小明 95

小红 81

小新 89

小丽 85

Python 成绩:

小明 82

小红 83

小新 94

小丽 91

平均成绩如下: 

(小红,83.67)     

(小新,88.33)     

(小明,89.67)   

(小丽,88.67) 

 

 未完待续

你可能感兴趣的:(spark实验(四)--RDD编程(1))