- lvs、nginx、haproxy区别和使用场景?
企鹅侠客
linux聊聊运维lvsnginx运维
0.运维干货分享软考系统架构设计师三科备考经验附学习资料信息安全管理体系(ISMS)制度模板分享免费文档翻译工具(支持word、pdf、ppt、excel)PuTTY中文版安装包MobaXterm中文版安装包pinginfoview网络诊断工具中文版LVS(LinuxVirtualServer)、Nginx和HAProxy都是常见的负载均衡工具,它们在不同的场景中各有优势。以下是它们的区别、特点及
- 牛客练习赛135——小柒的逆序对(2)
KyollBM
算法数据结构
这里还得说一下,调换一个排列中任意两个不同的数,该排列的逆序数奇偶会改变题目:思路:这道题的数据给的很大,如果我们用树状数组维护前缀和都没用,但是我们观察到英文字符只有26个,那我们可以开一个二维数组g[i][j]表示ij字符对有多少个如何维护这个数组呢,其实也很简单,遍历s每个字符c,同时开一个数组储存26个字符对于字符c,先遍历26个字符y,将g[y][c]加上y的个数,结束后再将c的数量加一
- 16、JavaEE核心技术-EL与 JSTL
跟着汪老师学编程
java-eejava
EL与JSTL实践一.EL(ExpressionLanguage)EL(表达式语言)是JSP2.0中引入的一种简单的脚本语言,用于在JSP页面中简化数据的访问和显示。它通过一种类似于JavaScript的语法,允许开发者在JSP页面中直接访问JavaBean的属性、集合、甚至是Java类的静态字段和方法。1、EL的基本语法EL表达式的语法格式为${},例如:${requestScope.userN
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- OnionArch:构建高效.NET Core应用的洋葱架构模板
樊慈宜Diane
OnionArch:构建高效.NETCore应用的洋葱架构模板项目地址:https://gitcode.com/gh_mirrors/on/OnionArch项目介绍OnionArch是一个基于.NETCore的演示应用程序,采用了经典的洋葱架构(OnionArchitecture)。洋葱架构是一种分层架构模式,通过将核心业务逻辑与外部依赖(如数据库、UI等)分离,使得应用程序更加模块化、可维护和
- 国产 DeepSeek V3 被秒成“前浪“?谷歌开放最强 Gemini 2.0 全家桶:速度快60倍,上下文还长16倍!
Bryan Ding
人工智能深度学习
谷歌向所有人发布了Gemini2.0——迄今为止谷歌“功能最强大”的人工智能模型套件。1谷歌Gemini2.0向所有人开放去年12月,谷歌发布Gemini2.0Flash的实验版本,正式开启了代理型AI的新时代。Gemini2.0Flash是谷歌为开发者群体打造的高效主力模型,具有低延迟、高性能等优势。今年早些时候,谷歌在GoogleAIStudio中更新了2.0FlashThinkingExpe
- scaled_dot_product_attention实现逻辑
凤梧长宜放眼量
人工智能深度学习计算机视觉
torch.nn.functional.scaled_dot_product_attention(query,key,value,attn_mask=None,dropout_p=0.0,is_causal=False,scale=None,enable_gqa=False)->Tensor:参数:query(Tensor)–Querytensor;shape(batch_size,...,hea
- 嵌入式面试真题——上半部与下半部
70000cc
嵌入式面试真题面试单片机linuxc语言嵌入式硬件
软中断运行在中断上下文,它是静态分配的,内核编译时就已经确定,不能动态注册或删除。这限制了它们的灵活性,但提高了性能。软中断可以在多个CPU上并行运行,包括同一种类型的软中断,所以需要处理好同步问题,比如使用自旋锁。不过,软中断的代码必须是可以重入的,这增加了实现的复杂性。常见的应用例子是网络和块设备的数据处理。Tasklet也是在中断上下文中运行,它是在软中断的基础上构建的。比如,tasklet
- IDEA下载依赖慢
最懒的菜鸟
intellij-ideajava
因为是境外所以慢,像kafka依赖这些等半天有时还出错,怎么决绝呢?切换阿里云镜像源即可首先找到settings.xml文件,位置一般在于C:\Users\你的用户名\.m2\settings.xmalimavenaliyunmavenhttps://maven.aliyun.com/repository/publiccentral找不到settings.xml文件打开idea,到项目中pom.x
- 【PyTorch】PyTorch 中改变张量形状的几种方法
shengchao0920
pytorch人工智能python
PyTorch中改变张量形状的几种方法在深度学习领域,PyTorch是一个广泛使用的框架,它提供了丰富的API来处理张量(tensor)。在模型开发过程中,我们经常需要改变张量的形状以满足特定的需求。本文将介绍在PyTorch中改变张量形状的几种方法,并给出推荐的使用场景。比如:我们想合并一个张量的最后两个维度。一、方法1.使用reshape方法reshape方法可以改变张量的形状而不改变其数据。
- K8s 集群监控:从指标采集到可视化展示的完整方案
花笺墨韵
kubernetes
目录一、引言二、指标采集(一)K8s内置指标(二)Prometheus指标采集三、数据存储(一)Prometheus本地存储(二)远程存储四、可视化展示(一)Grafana基础(二)K8s相关仪表盘模板五、总结一、引言Kubernetes(K8s)集群环境复杂且动态变化,应用程序的运行状况、资源的使用情况时刻都在改变。为了保障K8s集群高效、稳定地运行,及时发现潜在问题并做出响应,一套完善的监控体
- Git的详细使用方法
QMT量化交易
Pythongit
Git是一个分布式版本控制系统,用于跟踪和管理代码的变更。以下是Git的详细使用方法:1.安装GitWindows:从Git官网下载安装包。Linux(Ubuntu/Debian)sudoaptinstallgitmacOS:使用Homebrew。brewinstallgit验证安装git--version2.配置用户信息首次使用首次使用时,Git前需配置全局用户名和邮箱:gitconfig--g
- ArkTs进阶
万事顺心
开发语言鸿蒙typescript
字符串加号两边只要有字符串,就是拼接的作用。模版字符串(`xxx`)主要用于拼接多个变量的字符串拼接letname:string='Tom'console.log(`姓名:${name}`)类型转换1.字符串转数字Number():字符串直接转数字,转换失败返回NaN(字符串中包含非数字)(常用)parseInt():去掉小数部分转数字(取整),转换失败返回NaNparseFloat():保留小数
- CESM1.2.1移植使用说明
༊.枕星'听光.ঌ
人工智能linux
文章目录概述环境配置cesm1_2_1配置部分环境软件压缩包改变CLM陆面模式结果文件的输出变量、特征值及频率小结概述记录用户如何在Linux系统上移植CESM1.2.1模型,并且使用CLM4.5模式创建并单点模拟算例I_2000_CLM45。环境配置1.更新系统软件源2.更新系统安装软件安装git、make、python等。3.安装MPI(openmpi4.1.5)//下载并解压进入文件夹wge
- PyTorch 中的维度操作详解
萝卜小白
pytorch人工智能python
在PyTorch中,维度(dimension)是描述张量形状的一种方式。维度操作是PyTorch中非常重要的功能,常用于调整张量的形状以适配各种计算需求。以下是常见的维度操作及其示例。1.维度的概念回顾一个二维张量(矩阵)的形状是(行数,列数)。一个三维张量的形状是(深度,行数,列数)。维度的索引从0开始,最外层是axis=0,向内依次递增。2.维度的操作(1)求和(Sum)sum(dim)的作用
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- Linux下共享内存 和 命名管道 的使用
誓约酱
Linux应用linux服务器c++算法
文章目录Linux共享内存:完整代码展示与剖析共享内存:原理、接口与应用实践引言一、共享内存核心原理⚙️1.1共享内存的特点1.2生命周期管理⏳二、关键系统接口解析2.1生成唯一标识Key2.2创建/获取共享内存️2.3内存挂接与去关联2.4控制操作完整代码展示1.公用头文件`common.hpp`2.客户端代码`client.cc`3.服务端代码`server.cc`编译与运行编译命令运行步骤▶
- torch.logical_and()方法
CodeWang_NC
pytorch深度学习python
torch.logical_and()计算给定输入张量的元素逻辑AND。零被视为False,非零被视为True官方文档说明:https://pytorch.org/docs/stable/generated/torch.logical_and.html#torch.logical_andtorch.logical_and(input,other,*,out=None)→返回张量input(张量)–
- 解决Windows平台下 Visual Studio 中文显示乱码问题
人生三渡
VisualStudiovisualstudio代码规范预编码
目录常用编码格式介绍中文乱码的原因中文乱码的解决方式下载VisualStudio的扩展插件验证是否乱码问题是否解决常用编码格式介绍我们一般常用的就以下几种编码格式:GBK,UTF-8以及Unicode等。GBK:是一种汉字编码规范,它扩展了GB2312编码标准,增加了更多的汉字和符号。GBK详解UTF-8:是针对Unicode的一种可变长度字符编码。它可以用来表示Unicode标准中的任何字符,而
- QT基础 QPropertyAnimation简单学习
路奇怪
QT基础qt学习
目录1.简单介绍2.使用步骤3.部分代码示例4.多项说明5.信号反馈6.自定义属性1.定义自定义属性2.使用QPropertyAnimation动画化自定义属性3.连接信号和槽4.注意事项7.更多高级示例1.简单介绍QPropertyAnimation是Qt中的一个类,用于实现属性动画效果。它通过改变对象的属性值来创建动画效果,可以实现平移、旋转、缩放等动画效果。QPropertyAnimatio
- C++基础 调用堆异常
路奇怪
C++基础c++
目录跨平台(C++23环境下)windows下可以极大地帮助解决在开发人员系统上无法重现的客户问题,并且调用了一个通用函数,您不知道它的调用者,因为它们很多。必须为客户提供一个可执行文件和一个使用该可执行文件构建的pdb,才能获得正确的调用堆栈。pdb文件包含调试符号。您不能提供稍后从同一代码构建的pdb。当我们构建可执行文件时,每个函数都有一个地址偏移量。pdb基于这些偏移量。再次生成二进制文件
- vs2019 Qt C++中调用python代码
路奇怪
VisualStudioqtc++
目录1.添加依赖库,.lib,include2.修改python.h文件3.环境搭建好了下面是测试代码部分4.如果按照面上走可能会出现的问题:5.Qt+vs+python6.说一下这里调py的主要步骤借鉴几位大佬(吐槽一下各种坑啊)混合编程之——C++调用python2.7&python3.5-CSDN博客c++调用python(复杂版)_c++调用python复杂库-CSDN博客环境配置:1.添
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- 探究Visual Studio中的乱码问题
L-Super
杂记visualstudioide
关于乱码,没遇到皆大欢喜,遇到了头痛不已。在VisualStudio中程序遇到乱码,需要明确三个概念,那么问题就好解决了。三个字符集概念源码字符集MSVC中/source-charset即源代码文本文件的字符集,NodePad++、记事本、VSCode这样类似的文本编辑器,可以打开源文件看一下你的字符集(文件编码)。源代码文本文件是以二进制的形式存在硬盘里的,无论中文英文都一样,当你输入一个汉字后
- 门控循环单元(GRU)
six.学长
机器学习深度学习gru深度学习人工智能
门控循环单元(GRU)门控循环单元(GatedRecurrentUnit,GRU)是长短期记忆(LSTM)的简化版本。GRU通过减少门控机制的数量,提高了计算效率,同时在很多任务上性能与LSTM相近。GRU由两个主要的门组成:重置门和更新门。这些门帮助GRU决定如何在每个时间步更新和传递信息。GRU结构GRU的结构相比LSTM更简单,没有独立的记忆细胞状态。它通过两个门(重置门和更新门)来控制信息
- 探索Hyperlane:用Rust打造轻量级、高性能的Web后端框架
LTPP
rust前端开发语言后端服务器算法
引言在Web开发的世界里,性能和效率是每个开发者追求的终极目标。如果你正在寻找一个兼具速度、安全性和开发便捷性的后端框架,那么基于Rust语言开发的Hyperlane绝对值得你的关注!Hyperlane是一个轻量级、高性能的HTTP服务器框架,专为现代Web服务设计,旨在让开发者以最小的代价构建出强大的网络应用。本文将带你深入了解Hyperlane的独特魅力,并通过实用示例和推广内容激发你立即尝试
- Manus开源平替-开源通用智能体
galileo2016
人工智能
原文链接:https://i68.ltd/notes/posts/250306-opensource-agi-agent/OWL-比Manus还强的全能开源AgentOWL:OptimizedWorkforceLearningforGeneralMulti-AgentAssistanceinReal-WorldTaskAutomation,现实世界中执行自动化任务的通用多代理辅助优化学习框架项目仓
- llm数据存储基础设施
galileo2016
人工智能
链接:https://i68.ltd/notes/posts/20250310-llm-db/infinity专为LLM应用程序构建的AI原生数据库,可提供对密集向量、稀疏向量、张量(多向量)和全文的快速混合搜索项目仓库:https://github.com/infiniflow/infinity关键特性令人难以置信的快在百万级矢量数据集上实现0.1毫秒查询延迟和15K+QPS在33M文档的全文搜
- [Pytorch] Error:module ‘torch‘ has no attribute ‘logical_and‘
江南蜡笔小新
杂记pytorch深度学习神经网络
最近学习的模型用到了这个逻辑与的操作,Pytorch1.3.x报错。查阅官方文档,只有logical_not和logical_xor的实现。但在1.9的文档中有logical_and遂查阅相关更新,得知logical_and在1.5之后的新功能,pytorch更新到>=1.5即可解决问题。1.3.1搜索结果1.5.1搜索结果
- CSS中粘性定位
~废弃回忆 �༄
HTMLcss前端htmlCSS中粘性定位
1.如何设置为粘性定位?给元素设置posttion:sticky即可实现粘性定位.可以使用left,right,top,bottom四个属性调整位置,不过最常用的是top值.2.粘性定位的参考点在哪里?离他最近的一个拥有"滚动机制"的祖先元素,即便这个祖先不是最近的真实可滚动祖先.3.粘性定位元素的特点?不会脱离文档流,它是一种专门用于窗口滚动时的新的定位方式.最常用的值是top值;粘性定位和浮动
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不