- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- KL散度:信息差异的量化标尺 | 从概率分布对齐到模型优化的核心度量
不对称性、计算本质与机器学习的普适应用本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与数学本质KL散度(Kullback-LeiblerDivergence)用于衡量两个概率分布PPP和QQQ的差异程度,定义为:DKL(P∥Q)=∑x∈XP(x)logP(x)Q(x)(离散形式)D_
- [特殊字符] LLM(大型语言模型):智能时代的语言引擎与通用推理基座
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理LLM大模型Transformer
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从千亿参数到人类认知的AI革命一、核心定义与核心特征LLM(LargeLanguageModel)是基于海量文本数据训练的深度学习模型,通过神经网络架构(尤其是Transformer)模拟人类语言的复杂规律,实现文本理解、生成与推理任务。其核心特征可概
- MLE最大似然估计:数据驱动的概率模型参数推断基石
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法MLE参数估计概率论
从样本中还原未知分布的本质规律本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心思想与数学定义最大似然估计(MaximumLikelihoodEstimation,MLE)是频率学派的参数估计方法,其核心思想为:选择使观测数据出现概率最大的参数值。给定独立同分布样本X={x1,x2,…,xn}
- 【薄媚摘遍·春】诗词接龙大赛(总第117期)
陈良心
郑重声明:作品皆作者原创,文责自负!【文字家园诗词】本期词牌《薄媚摘遍·春》赵以夫体,双调九十二字,前段十一句三仄韵、一叶韵,后段十句四仄韵、一叶韵。纳兰蕙若:薄媚摘遍·落絮摘梅时醉花阴,青玉案,春事今如许。柳含烟,梅弄影,吹花飞絮相妒。缤纷渐去,兀自飘飘,催雪满亭庐。不忆曾经,风尘别怨鹧鸪语。浮世欢娱难聚。哪管莺啼序。芳草渡,少年游,云山万叠千阻。权当知会,寄与征鸿,步月桂香酥。品令归来,词林拾
- 卷积神经网络-数据增强
红米煮粥
cnn人工智能神经网络
文章目录一、概述二、数据增强的类别1.裁剪2.翻转和旋转3.随机遮挡4.图像变换5.对transforms的选择操作,使数据增强更灵活三、应用场景四、总结一、概述数据增强(也叫数据扩增)的目的是为了扩充数据和提升模型的泛化能力。有效的数据扩充不仅能扩充训练样本数量,还能增加训练样本的多样性,一方面可避免过拟合,另一方面又会带来模型性能的提升。二、数据增强的类别1.裁剪中心裁剪:transforms
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 知识蒸馏:模型压缩与知识迁移的核心引擎
大千AI助手
人工智能Python#OTHERtransformer人工智能神经网络深度学习知识蒸馏KD蒸馏
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从软目标迁移到无数据合成的轻量化革命一、核心定义与技术价值知识蒸馏(KnowledgeDistillation,KD)是一种通过迁移大型教师模型(Teacher)的知识至小型学生模型(Student)的模型压缩技术。其核心思想是:学生模型不仅学习原始数
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 【短篇小说】你家祖坟冒青烟
沐子小六
01今日,叶泠打扮的分外素净,仅着一身淡蓝色绸缎长裙,乌黑浓密的长发披于秀肩上,插一只简单的木簪。少女素颜宛如刚剥壳的鸡蛋,一双杏眼干净澄澈,越发衬的她更加惹人怜爱。祖坟边,少女跪下,虔诚的祈祷:“信女叶泠,唯愿兄长叶宣此次科举考试能金榜题名。”良久,叶泠起身,惊讶地看着面前的祖坟,生起了一缕缕的白烟。“这是……”叶泠想起娘亲恨铁不成钢地骂着叶宣,若叶宣能中举,必定得是祖坟上冒青烟。再一转头,果真
- Java大厂面试实录:从Spring Boot到AI微服务架构的深度技术拷问
第一轮提问面试官:小曾,今天我们主要考察Java后端开发能力,从基础开始。场景:假设你要设计一个电商平台的订单系统,订单量峰值达到每秒1000笔。你会选择哪些技术栈?为什么?场景:订单系统需要高可用,数据库选择MySQL,你会如何优化数据库连接池?场景:订单支付后需要通知库存系统减库存,你会选择哪种消息队列?如何保证消息可靠性?小曾:(搓手)嗯…订单系统,我会用SpringBoot,数据库用MyS
- Java全栈面试实录:从Spring Boot到AI大模型,互联网大厂求职者的技术洗礼
**第一轮提问面试官:小曾,先谈谈你在SpringBoot项目中的缓存实践。小曾:我常用Redis,通过@Cacheable注解实现方法缓存,配置了Redis集群模式。面试官:很好!在电商秒杀场景,如果缓存击穿怎么办?小曾:可以用布隆过滤器或互斥锁解决,但具体实现得看业务...面试官:你提到SpringCloud,能说说服务注册选Consul还是Eureka?小曾:Eureka简单,Consul更
- Java大厂面试实录:从Spring Boot到AI微服务架构的层层递进
remCoding
Java场景面试宝典JavaSpringBootSpringCloudAIKafkaRedisMicroservices
场景:互联网大厂Java后端面试面试官(严肃):请简单介绍下你参与过的项目,主要使用哪些技术栈?小曾(自信):我参与过电商平台的订单系统,用了SpringBoot+SpringCloudAlibaba,数据库是MySQL+Redis缓存,消息队列用Kafka处理异步任务。面试官(点头):不错,能具体说说订单系统如何应对高并发场景的吗?小曾:我们用了HikariCP优化数据库连接池,Redis集群做
- AI产品经理面试宝典第18天:AI思维矩阵构建与实战应用面试题与答法
TGITCIC
AI产品经理一线大厂面试题产品经理面试AI产品经理面试大模型产品经理面试AI面试大模型面试
如何构建AI思维矩阵?产品经理的"降维攻击"密码面试官:请解释什么是AI思维矩阵?作为产品经理如何构建这种思维?你的回答:AI思维矩阵不是技术架构,而是产品经理在AI时代的核心认知框架。它包含四个关键维度:软硬结合创新:如智能音箱通过硬件采集语音数据,软件优化交互体验,形成闭环数据驱动决策:在智能客服场景中,通过用户对话数据优化意图识别模型,实现NLU准确率提升30%生态协同视角:以智能家居为例,
- HTML——css--盒子模型与布局
盒子:html中任何一个元素如div、span等都可以看作盒子,每个元素本质属性都会存在一些区别而这种现象则被称为盒子模型盒子模型种类1.块级盒子(标签、元素):divullih1~h6独占一行,对宽度高度支持2.内联级盒子:spana不独占一行,对宽度高度不支持3.内联块级盒子:imginput不独占一行,对宽度高度支持4.弹性盒子:不论父级能不能放下子元素,子元素始终横向布局盒子模型分区内容区
- 战双帕弥什怎么当托?战双帕弥什内部号如何才能申请?
诸葛村夫123
我曾在某游戏平台担任两年游戏运营主管,我可以负责的的告诉你,目前市面上90%的游戏都有托?相信大多数玩家都遇到过托吧!游戏一开新区,动不动就充几百几千的。其实这些都是托,也就是我们业内常说的内部号。内部号一般进服游戏运营商就会给300-500的充值扶持,另外还会有v7-v9的vip等级扶持,更何况内部号充值100=600普通账号充值100=100,有的游戏内部号还会有装备礼包材料等扶持。内部号直接
- Instagram千号矩阵:亚矩阵云手机破解设备指纹检测的终极方案
云云321
矩阵智能手机线性代数
在Instagram的全球化运营中,构建千号矩阵已成为品牌扩大曝光、精准触达用户的核心策略。然而,平台对设备指纹的强监管——通过硬件参数聚类、传感器动态性检测、IP地理一致性校验等200余个维度构建风控模型,使得传统多账号运营面临高封号率、低存活率的双重挑战。亚矩阵云手机通过动态设备指纹重置、智能行为仿真与独立IP池管理三大技术模块,为Instagram千号矩阵提供了安全、高效、低成本的解决方案。
- HTML中的盒子模型
空空kkk
css前端
一、块级盒子(Block-levelBox)1、布局特性:元素在页面中独占一行,前后都会自动换行,形成一个独立的矩形区域2、尺寸控制:支持精确设置宽度(width)和高度(height),即使内容为空也能保持设定的尺寸3、常见元素:结构容器:div文本段落:p标题:h1~h6列表:ul、ol、li表格:table4、默认行为:宽度默认填满父级容器(width:100%)高度由内容自动撑开(heig
- 数据结构——线性表
木子杳衫
数据结构c++c#
目录一、线性表的定义二、线性表的分类(1)顺序表(2)单链表三、最常见的基本操作四、C/C++实现(1)顺序表1、静态顺序表1)定义其数据类型。2)相关代码。2、动态顺序表1)定义其数据类型。2)相关代码(2)单链表1、带头结点1)初始化2)判空3)查找4)插入4)删除2、不带头结点1)初始化2)判断是否为空3)插入(3)扩展1、双链表1)初始化2)删除3)销毁2、循环单链表1)初试化3、循环双链
- PyTorch torch.no_grad() 指南(笔记)
拉拉拉拉拉拉拉马
pytorch人工智能python笔记深度学习
PyTorchtorch.no_grad()权威在PyTorch深度学习框架中,高效的显存管理对于训练复杂模型和执行大规模推理任务至关重要。显存不足(OutOfMemory,OOM)错误是开发者经常面临的挑战之一。torch.no_grad()作为PyTorch提供的一个核心工具,能够在推理(inference)和验证(validation)阶段显著优化显存使用并提升计算速度。本报告旨在全面、深入
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- React Native iOS 全栈开发:跨平台开发的最佳实践
AI天才研究院
ChatGPT计算AI人工智能与大数据reactnativeiosreact.jsai
ReactNativeiOS全栈开发:跨平台开发的最佳实践关键词:ReactNative、iOS开发、跨平台开发、全栈开发、最佳实践摘要:本文围绕ReactNativeiOS全栈开发展开,详细探讨了跨平台开发的最佳实践。从核心概念入手,介绍了ReactNative和iOS开发相关知识,阐述它们之间的联系。深入讲解核心算法原理和具体操作步骤,通过数学模型和公式进一步剖析。提供项目实战案例,包含开发环
- 117、Python机器学习:数据预处理与特征工程技巧
多多的编程笔记
python机器学习开发语言
Python开发之机器学习准备:数据预处理与特征工程机器学习是当前人工智能领域的热门方向之一。而作为机器学习的核心组成部分,数据预处理与特征工程对于模型的性能有着至关重要的影响。本文将带领大家了解数据预处理与特征工程的基本概念,以及它们在实际应用场景中的重要性。数据预处理数据预处理是机器学习中的第一步,它的主要目的是将原始数据转换成适合进行机器学习模型训练的形式。就像我们在做饭之前需要清洗和准备食
- 【PDF文档转换工具2.4.5】【电脑软件win7/10】免费PDF转换工具,包含各种常用转换工具,PDF转换不乱码!近乎完美的PDF转WORD方法,不花钱就能搞定!PDF文档转换工具!永久免费使用
qq_32402851
pdfword
使用教程一、软件获取与安装软件安装包及激活码放置在视频下方或首页第一个视频里。下载安装包后,运行安装程序,选择自定义安装,避免安装在C盘,然后点击下一步直至安装完成。首次运行软件时,会弹出界面,选择“我已经有解码密码,并想解开这款工具”,点击解锁按钮。将txt文档中的激活码内容粘贴到相应位置,再粘贴解锁密码,点击确定,若提示解锁成功,则软件可永久免费使用,且无弹窗提醒激活。二、PDF格式转换操作双
- Anime.js的cleanInlineStyles用法
第一章:动画的“身后事”——我们为什么需要清理样式?在深入探讨cleanInlineStyles这个具体的工具函数之前,理解它所要解决的根本问题至关重要。这个问题源于JavaScript动画库的核心工作机制,尤其是像Anime.js这样直接与DOM(文档对象模型)交互的库。1.1Anime.js的工作原理:内联样式的魔法与诅咒Anime.js的强大之处在于其能够以极高的性能和灵活性来驱动网页动画1
- 一夜爆红的AI革命:Manus如何定义“智能体”新纪元?
莫非技术栈
人工智能
一夜爆红的AI革命:Manus如何定义“智能体”新纪元?——技术突破、资本狂欢与未来挑战全解析一、技术革新:从“对话助手”到“行动代理”的质变Manus的爆火并非偶然,其核心技术架构突破了传统AI工具的边界,重新定义了人机协作模式:多智能体协同框架Manus采用动态调度系统,据其技术白皮书显示,系统可调用多领域专业模型(官方未公布具体模型名称),通过实时评估模型响应速度、准确率、成本等指标,自动分
- 做智慧型班主任
鱼儿_82f8
2018年5月5日,参加第五届全国班主任工作艺术与心理健康教育高端论坛第一天,开幕式有安徽师范大学方双虎教授主持。图片发自App上、下午聆听了全国德育专家邹六根教授和全国优秀班主任王文英老师的报告。邹教授的班级管理具体化、精细化,以骆驼文化为主线,诠释了他的班级管理内涵。图片发自App图片发自App图片发自App图片发自App图片发自App班级管理邹教授作为班主任用心、用情、用智慧,使班级德育课程
- GEV/POT/Markov/点过程/贝叶斯极值全解析;基于R语言的极值统计学
极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的统计建模及分析方法;在水文、气象、环境、生态、保险和金融等领域都有着广泛的应用。专题一、独立假设下的极值统计建模主要内容包括:1.广义极值模型.2.极小值的处理.3.广义Pareto模型.4.第r大次序统计量建模.5.R语言中极值统计学包.6.实例操作1-2.(提供案例数据及代码)专题二、平稳时间序列的极值统计建
- AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
当你的团队还在手动拼装显卡集群时,聪明人早已教会Kubernetes自动调度千卡。就像交响乐团需要指挥家,万级GPU需要云原生调度艺术。深夜的机房,硬件工程师老张盯着监控屏上跳动的红色警报——手工组装的千卡集群再次因单点故障崩溃。而隔壁团队通过Kubernetes调度的百卡集群,训练效率竟高出他们47%。这不是魔法,而是云原生调度的降维打击。一、千卡训练:为什么传统方法行不通?想象指挥没有乐谱的千
- 学习笔记(39):结合生活案例,介绍 10 种常见模型
宁儿数据安全
#机器学习学习笔记生活
学习笔记(39):结合生活案例,介绍10种常见模型线性回归只是机器学习的“冰山一角”!根据不同的任务场景(分类、回归、聚类等),还有许多强大的模型可以选择。下面我用最通俗易懂的语言,结合生活案例,介绍10种常见模型及其适用场景:一、回归模型(预测连续值,如房价)1.决策树(DecisionTree)原理:像玩“20个问题”游戏,通过一系列判断(如“面积是否>100㎡?”“房龄是否0.5就判为“会”
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod