When a rectangle is cut by a straight line, we can easily obtain two polygons as the result. But the reversed problem is harder: given two polygons, your task is to check whether or not they could be obtained by cutting a rectangle.
To give you more trouble, the input polygons are possibly moved, rotated (90 degrees, 180 degrees, or 270 degrees counter-clockwise), or even flipped (mirrored).
It is assumed that the original rectangle's edges are parallel to the axis.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤), and then N pairs of polygons are given. Each polygon is described in the format:
k x1 y1 ⋯ xk yk
where k (2) is the number of vertices on the polygon, and (xi, yi) (0) are the coordinates of the vertices, given in either clockwise or counter-clockwise order.
Note: there is no redundant vertex. That is, it is guaranteed that all the vertices are distinct for each polygon, and that no three consecutive vertices are on the same line.
Output Specification:
For each pair of polygons, print in a line either YES
or NO
as the answer.
Sample Input:
8
3 0 0 1 0 1 1
3 0 0 1 1 0 1
3 0 0 1 0 1 1
3 0 0 1 1 0 2
4 0 4 1 4 1 0 0 0
4 4 0 4 1 0 1 0 0
3 0 0 1 1 0 1
4 2 3 1 4 1 7 2 7
5 10 10 10 12 12 12 14 11 14 10
3 28 35 29 35 29 37
3 7 9 8 11 8 9
5 87 26 92 26 92 23 90 22 87 22
5 0 0 2 0 1 1 1 2 0 2
4 0 0 1 1 2 1 2 0
4 0 0 0 1 1 1 2 0
4 0 0 0 1 1 1 2 0
Sample Output:
YES
NO
YES
YES
YES
YES
NO
YES
1 #include2 using namespace std; 3 int main() 4 { 5 // ios::sync_with_stdio(false); 6 // freopen("data.txt","r",stdin); 7 int n,k,x; 8 int c1,c2; 9 scanf("%d",&n); 10 for(;n--;) 11 { 12 int p411=-1,p412=-1,p421=-1,p422=-1; 13 vector int,int> > v1,v2; 14 bool flag=false; 15 pair<int,int> p1(0,0); 16 pair<int,int> p2(0,0); 17 scanf("%d",&k); 18 for(int i=0;i ) 19 { 20 scanf("%d %d",&c1,&c2); 21 if((!v1.empty())&&(c1-v1.back().first)&&(c2-v1.back().second)) 22 { 23 if(!p1.first||!p1.second) 24 { 25 p1.first=abs(c1-v1.back().first); 26 p1.second=abs(c2-v1.back().second); 27 if(k>3) 28 { 29 p411=i-1; 30 p412=i; 31 } 32 } 33 else 34 { 35 p1.first=-1; 36 p1.second=-1; 37 } 38 } 39 v1.push_back(pair<int,int>(c1,c2)); 40 } 41 if(!p1.first||!p1.second) 42 { 43 p1.first=abs(v1.front().first-v1.back().first); 44 p1.second=abs(v1.front().second-v1.back().second); 45 if(k>3) 46 { 47 p411=k-1; 48 p412=0; 49 } 50 } 51 else if((v1.front().first-c1)&&(v1.front().second-c2)) 52 { 53 p1.first=-1; 54 p1.second=-1; 55 } 56 scanf("%d",&k); 57 for(int i=0;i ) 58 { 59 scanf("%d %d",&c1,&c2); 60 if((!v2.empty())&&(c1-v2.back().first)&&(c2-v2.back().second)) 61 { 62 if(!p2.first||!p2.second) 63 { 64 p2.first=abs(c1-v2.back().first); 65 p2.second=abs(c2-v2.back().second); 66 if(k>3) 67 { 68 p421=i-1; 69 p422=i; 70 } 71 } 72 else 73 { 74 p2.first=-2; 75 p2.second=-2; 76 } 77 } 78 v2.push_back(pair<int,int>(c1,c2)); 79 } 80 if(!p2.first||!p2.second) 81 { 82 p2.first=abs(v2.front().first-v2.back().first); 83 p2.second=abs(v2.front().second-v2.back().second); 84 if(k>3) 85 { 86 p421=k-1; 87 p422=0; 88 } 89 } 90 else if((v2.front().first-c1)&&(v2.front().second-c2)) 91 { 92 p2.first=-2; 93 p2.second=-2; 94 } 95 if(p1.first>p1.second) 96 swap(p1.first,p1.second); 97 if(p2.first>p2.second) 98 swap(p2.first,p2.second); 99 if(p1==p2) 100 { 101 if(v1.size()==3) 102 flag=true; 103 else if(v1.size()==4) 104 { 105 flag=true; 106 if(v2.size()==4) 107 { 108 if(!p1.first) 109 flag=true; 110 else if(p1.first!=p1.second) 111 { 112 int m1=max(abs(v1[(p411+2)%4].first-v1[(p411+3)%4].first),abs(v1[(p411+2)%4].second-v1[(p411+3)%4].second)); 113 int m2=max(abs(v2[(p421+2)%4].first-v2[(p421+3)%4].first),abs(v2[(p421+2)%4].second-v2[(p421+3)%4].second)); 114 if(m1!=m2) 115 flag=false; 116 } 117 } 118 else if(v2.size()>4) 119 flag=false; 120 } 121 else if(v1.size()==5) 122 { 123 if(v2.size()==3) 124 flag=true; 125 } 126 } 127 if(flag) 128 printf("YES\n"); 129 else 130 printf("NO\n"); 131 } 132 return 0; 133 }