Tree Traversals - Hard Version

Given the partial results of a binary tree's traversals in in-order, pre-order, and post-order. You are supposed to output the complete results and the level order traversal sequence of the corresponding tree.

Input Specification:

Each input file contains one test case. For each case, a positive integer N (≤) is given in the first line. Then three lines follow, containing the incomplete in-order, pre-order and post-order traversal sequences, respectively. It is assumed that the tree nodes are numbered from 1 to N and no number is given out of the range. A - represents a missing number.

Output Specification:

For each case, print in four lines the complete in-order, pre-order and post-order traversal sequences, together with the level order traversal sequence of the corresponding tree. The numbers must be separated by a space, and there must be no extra space at the beginning or the end of each line. If it is impossible to reconstruct the unique tree from the given information, simply print Impossible.

Sample Input 1:

9
3 - 2 1 7 9 - 4 6
9 - 5 3 2 1 - 6 4
3 1 - - 7 - 6 8 -
 

Sample Output 1:

3 5 2 1 7 9 8 4 6
9 7 5 3 2 1 8 6 4
3 1 2 5 7 4 6 8 9
9 7 8 5 6 3 2 4 1
 

Sample Input 2:

3
- - -
- 1 -
1 - -
 

Sample Output 2:

Impossible
  1 #include
  2 using namespace std;
  3 int n,t,flag;
  4 vector<int> v0,vp;
  5 vectorint> > vd;
  6 vectorint> > v;
  7 vectorint> > vr;
  8 vectorint> > vl(2);
  9 vectorint> > vle(2);
 10 bool ip2p(int i1,int i2,int p1,int p2,int pr,int d)
 11 {
 12     int v11=v[1][p1];
 13     vp[pr]=v11;
 14     if(v[2][pr]&&(v[2][pr]!=v11))return false;
 15     int vds=vd.size();
 16     if(vds<=d)
 17     {
 18         vector<int> vdd(1,v11);
 19         vd.emplace_back(vdd);
 20     }
 21     else vd[d].emplace_back(v11);
 22     
 23     int i3=vr[0][v11-1];
 24     int lenl=i3-i1;
 25     int lenr=i2-i3;
 26     if(lenl)
 27     {
 28         if(lenr)return ip2p(i1,i3-1,p1+1,p1+lenl,pr-1-lenr,d+1)&&ip2p(i3+1,i2,p1+lenl+1,p2,pr-1,d+1);
 29         else return ip2p(i1,i3-1,p1+1,p1+lenl,pr-1-lenr,d+1);
 30     }
 31     else
 32     {
 33         if(lenr) return ip2p(i3+1,i2,p1+lenl+1,p2,pr-1,d+1);
 34         else return true;
 35     }
 36 }
 37 void dfs()
 38 {
 39     if(flag==2)
 40     return;
 41     else if(!vle[0].empty())
 42     {
 43         int i=vl[0].front();
 44         int ie=vle[0].front();
 45         vle[0].pop_front();
 46         do
 47         {
 48             int ii=vl[0].front();
 49             vl[0].pop_front();
 50             v[0][ie]=ii;
 51             vr[0][ii-1]=ie;
 52             dfs();
 53             v[0][ie]=0;
 54             vr[0][ii-1]=-1;            
 55             vl[0].emplace_back(ii);
 56             
 57         }while(i!=vl[0].front());
 58         vle[0].emplace_front(ie);
 59     }
 60     else if(!vle[1].empty())
 61     {
 62         int i=vl[1].front();
 63         int ie=vle[1].front();
 64         vle[1].pop_front();
 65         do
 66         {
 67             int ii=vl[1].front();
 68             vl[1].pop_front();
 69             v[1][ie]=ii;
 70             vr[1][ii-1]=ie;
 71             dfs();
 72             v[1][ie]=0;
 73             vr[1][ii-1]=-1;    
 74             vl[1].emplace_back(ii);
 75         }while(i!=vl[1].front());
 76         vle[1].emplace_front(ie);
 77     }
 78     else
 79     {
 80         if(flag==2)
 81         return;
 82         else
 83         {
 84             if(ip2p(0,n-1,0,n-1,n-1,0))
 85             {
 86                 flag++;
 87                 if(flag==1)
 88                 {
 89                     for(int i=0;i<2;i++)
 90                     for(int j=0;j)
 91                     v0.emplace_back(v[i][j]);
 92                     for(auto i:vp)
 93                     v0.emplace_back(i);
 94                     for(auto i:vd)
 95                     for(auto j:i)
 96                     v0.emplace_back(j);
 97                 }
 98             }
 99             vd.clear();
100         }
101     }
102 }
103  
104 bool dfs(int in,int pre,int post,int s)
105 {
106     if(!s)
107     return true;
108     else if(v[1][pre]||v[2][post+s-1])
109     {
110         int tm=max(v[1][pre],v[2][post+s-1]);
111         if(v[1][pre]&&v[1][pre]!=tm) return false;
112         if(v[2][post+s-1]&&v[2][post+s-1]!=tm) return false;
113         int rt=vr[0][tm-1];
114         int p1=v[1][pre];
115         int p2=v[2][post+s-1];
116         v[1][pre]=tm;
117         v[2][post+s-1]=tm;
118         if(rt<0)
119         {
120             for(int i=in;i<in+s;i++)
121             {
122                 if(!v[0][i])
123                 {
124                     int lenl=i-in;
125                     int lenr=s-1-lenl;
126                     if(lenl<0 || lenr<0)continue;
127                     v[0][i]=tm;
128                     vr[0][tm-1]=i;
129                     if(dfs(in,pre+1,post,s-lenr-1)&&dfs(in+lenl+1,pre+1+lenl,post+lenl,s-lenl-1))
130                     return true;
131                     v[0][i]=0;
132                     vr[0][tm-1]=-1;
133                 }
134             }
135             return false;
136         }
137         else
138         {
139             int lenl=rt-in;
140             int lenr=s-1-lenl;
141             if(lenl<0 || lenr<0)
142             {
143                 v[1][pre]=p1;
144                 v[2][post+s-1]=p2;
145                 return false;
146             }
147             else if(dfs(in,pre+1,post,s-lenr-1)&&dfs(in+lenl+1,pre+1+lenl,post+lenl,s-lenl-1))
148             return true;
149             else
150             {
151                 v[1][pre]=p1;
152                 v[2][post+s-1]=p2;
153                 return false;
154             }
155         }
156     }
157     else
158     {
159         for(int i=in;i<in+s;in++)
160         {
161             int lenl=i-in;
162             int lenr=s-1-lenl;
163             
164             if(lenl<0 || lenr<0)
165             {
166                 v[1][pre]=0;
167                 v[2][post+s-1]=0;
168             }
169             else if(!v[0][i])
170             {
171                 v[0][i]=t;
172                 vr[0][t-1]=i;
173                 v[1][pre]=t;
174                 v[2][post+s-1]=t;
175                 if(dfs(in,pre+1,post,s-lenr-1)&&dfs(in+lenl+1,pre+1+lenl,post+lenl,s-lenl-1))
176                 return true;
177                 v[0][i]=0;
178                 vr[0][t-1]=-1;
179             }
180             else
181             {
182                 v[1][pre]=v[0][i];
183                 v[2][post+s-1]=v[0][i];
184                 if(dfs(in,pre+1,post,s-lenr-1)&&dfs(in+lenl+1,pre+1+lenl,post+lenl,s-lenl-1))
185                 return true;
186             }
187             v[1][pre]=0;
188             v[2][post+s-1]=0;
189         }
190         return false;
191     }
192 }
193 void levelorder(int in,int pre,int s,int d)
194 {
195     if(!s) return;
196     else
197     {
198         int tm=v[1][pre];
199         int rt=vr[0][tm-1];
200         int lenl=rt-in;
201         int lenr=s-1-lenl;
202         if(d>=(int)vd.size())
203         {
204             vector<int> vt(1,tm);
205             vd.emplace_back(vt);
206         }
207         else
208         vd[d].emplace_back(tm);
209         levelorder(in,pre+1,s-lenr-1,d+1);
210         levelorder(in+lenl+1,pre+lenl+1,s-lenl-1,d+1);
211     }
212 }
213  
214 int main()
215 {
216 //    freopen("data.txt","r",stdin);
217     scanf("%d",&n);
218     v0.resize(n,0);
219     vp.resize(n,0);
220     v.resize(3,v0);
221     v0.clear();
222     v0.resize(n,-1);
223     vr.resize(3,v0);
224     v0.clear();
225     flag=0;
226     for(int i=0;i<3;i++)
227     {
228         for(int j=0;j)
229         {
230             scanf("%d",&v[i][j]);
231             if(v[i][j])
232             {
233                 t=v[i][j]-1;
234                 vr[i][t]=j;
235             }
236             else if(i<2)
237                 vle[i].emplace_back(j);
238         }
239         if(i<2)    for(int j=0;j)
240         {
241             if(vr[i][j]<0)
242             vl[i].emplace_back(j+1);
243         }
244     }
245     if(n<100)
246     {
247         dfs();
248         if(flag==1)
249         {
250             for(int i=0;i<4*n;i++)
251             printf("%d%s",v0[i],(i+1)%n?" ":"\n");
252         }
253         else printf("Impossible");
254     }
255     else
256     {
257         dfs(0,0,0,n);
258         for(int i=0;i<3*n;i++)
259         printf("%d%s",v[i/n][i%n],(i+1)%n?" ":"\n");
260         levelorder(0,0,n,0);
261         printf("%d",vd[0][0]);
262         for(int i=1;i<(int)vd.size();i++)
263         for(int j=0;j<(int)vd[i].size();j++)
264         printf(" %d",vd[i][j]);
265     }
266     return 0;
267 }

 

你可能感兴趣的:(Tree Traversals - Hard Version)