Android 消息机制学习

Android消息机制大家都不陌生,想必大家也都看过Handler、Looper的源码(看过就可以忽略下文咯,直接看后文的重点),下面就整合一下这方面的资料,加深对这方面的印象。

用法

private Handler mHandler = new Handler() {
    @Override
    public void handleMessage(Message msg) {
        switch (msg.what) {
            case MESSAGE_TEXT_VIEW:
                mTextView.setText("UI成功更新");
            default:
                super.handleMessage(msg);
        }
    }
};

new Thread(new Runnable() {
        @Override
        public void run() {
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
              Message message = new Message();   
            message.what = MESSAGE_TEXT_VIEW;     
            mHandler.sendMessage(message); 
        }
    }).start();

Handler 机制架构

Android 消息机制学习_第1张图片

从上图可以看到,是围绕 Handler、Message、MessageQueue 和 Looper 进行的。先介绍相关的概念

从开发角度看, Handler 是 Android 消息系统机制的上层接口,这使得在开发过程中只需要和 Handler 交互即可。另外, Handler 并不是专门用来更新 UI 的,只是经常被开发者用来更新 UI 而已,但是不能忽略它的其他功能,例如进行耗时的 I/O 操作等。

疑问:为什么子线程不能更新 UI?

这是因为 ViewRootImpl 对 UI 操作进行了验证

void checkThread() {
   if (mThread != Thread.currentThread()) {//Thread.currentThread()是UI主线程
       throw new CalledFromWrongThreadException(
               "Only the original thread that created a view hierarchy can touch its views.");
   }

另外, Android 的 UI 空间不是线程安全的,如果在多线程中并发访问可能会导致 UI 控件处于不可预期的状态。

疑问:为什么不对 UI 控件的访问加上锁机制呢?

这是因为加锁,会导致 UI 访问的逻辑变复杂;其次,锁机制会降低 UI 访问的效率。

这也是为啥会存在 Hanlder 的原因。

MessageQueue:消息队列,顾名思义,它的内部存储了一组消息,以队列的形式对外提供插入和删除的工作。但是其内部是采用单链表来存储消息列表。

Looper:循环(消息循环),以无限循环的形式去查找是否有新消息,有则处理,无则等待。

Handler 源码分析及其原理

Handler 的构造方法

Handler 的构造方法有很多,核心的构造方法如下

/**
 * Use the {@link Looper} for the current thread with the specified callback interface
 * and set whether the handler should be asynchronous.
 *
 * Handlers are synchronous by default unless this constructor is used to make
 * one that is strictly asynchronous.
 *
 * Asynchronous messages represent interrupts or events that do not require global ordering
 * with respect to synchronous messages.  Asynchronous messages are not subject to
 * the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
 *
 * @param callback The callback interface in which to handle messages, or null.
 * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
 * each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
 *
 * @hide
 */
public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {//默认是false,若为true,则会检测当前handler是否是静态类
        final Class klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }

    mLooper = Looper.myLooper();//获得了 Looper 对象
    if (mLooper == null) {//如果是工作线程,就为空
        throw new RuntimeException(
            "Can't create handler inside thread that has not called Looper.prepare()");//不能在未调用 Looper.prepare() 的线程创建 handler
    }
    mQueue = mLooper.mQueue;//mLooper对应的消息队列
    mCallback = callback;
    mAsynchronous = async;
}

一个构造方法,Android 消息机制的三个重要角色全部出现了,分别是 Handler 、Looper 以及 MessageQueue。

mLooper = Looper.myLooper();//获得了 Looper 对象

下面看看 Looper.myLooper() 方法是嘛

/**
 * Return the Looper object associated with the current thread.  Returns
 * null if the calling thread is not associated with a Looper.
 */
public static @Nullable Looper myLooper() {
    return sThreadLocal.get();
}

sThreadLocal 是个嘛

 // sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal sThreadLocal = new ThreadLocal();

好温馨的提示,定义在 Looper 中,是一个 static final 类型的 ThreadLocal 对象(在 Java 中,一般情况下,通过 ThreadLocal.set() 到线程中的对象是该线程自己使用的对象,其他线程是不需要访问的,也访问不到的,各个线程中访问的是不同的对象。)至于 ThreadLocal 是个嘛,参考这里

大概说一下, ThreadLocal 是一个线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储以后,只有在指定线程中可以获得存储的数据,对于其他线程来说则无法获取到数据。

对于 Handler 来说,它需要获取当前线程的 Looper,很显然,Looper 的作用域就是线程并且不同线程具有不同的 Looper,这个时候通过 ThreadLocal 就可以轻松实现 Looper 在线程中的存取。

根据提示,看看 prepare() 方法

/** Initialize the current thread as a looper.
  * This gives you a chance to create handlers that then reference
  * this looper, before actually starting the loop. Be sure to call
  * {@link #loop()} after calling this method, and end it by calling
  * {@link #quit()}.
  */
public static void prepare() {
    prepare(true);
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {//一个线程只会有一个 Looper
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

这段代码首先判断 sThreadLocal 中是否已经存在 Looper 了,如果还没有则创建一个新的 Looper 设置进去。下面看看 Looper 的构造方法

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

构造方法可以看出,创建了一个 MessageQueue,传入参数值为 true (子线程默认是true,why?后面有讲到);创建了一个当前 thread 的实例引用。很明显,one looper only one MessageQueue

到此,就有一个疑问了:在 UI Thread 中创建 Handler 时没有调用 Looper.prepare(),但是却能正常运行(但是,我们注意到,sThreadLocal.get() will return null unless you've called prepare()),Why?

既然能正常运行,那么肯定是调用了 prepare 方法,但是,在哪里调用了呢,这就要看主线程 ActivityThread 。首次启动 Activity 时通过 Process.start 创建应用层程序的主线程,创建成功后进入到主线程 ActivityThread 的 main 方法中开始执行, main 方法有:

    Looper.prepareMainLooper();

    ActivityThread thread = new ActivityThread();
    thread.attach(false);

    if (sMainThreadHandler == null) {
        sMainThreadHandler = thread.getHandler();
    }

    if (false) {
        Looper.myLooper().setMessageLogging(new
                LogPrinter(Log.DEBUG, "ActivityThread"));
    }

    Looper.loop();

很明显咯,秘密就在 prepareMainLooper() 里面(即使后面加了个 MainLooper,但也是个 prepare)

/**
 * Initialize the current thread as a looper, marking it as an
 * application's main looper. The main looper for your application
 * is created by the Android environment, so you should never need
 * to call this function yourself.  See also: {@link #prepare()}
 */
public static void prepareMainLooper() {
    prepare(false);//可以看出,UI thread传入的是false
    synchronized (Looper.class) {
        if (sMainLooper != null) {
            throw new IllegalStateException("The main Looper has already been prepared.");
        }
        sMainLooper = myLooper();
    }
}

UI 线程中会始终存在一个 Looper 对象( sMainLooper 保存在 Looper 类中, UI 线程通过getMainLooper 方法获取 UI 线程的 Looper 对象),从而不需要再手动去调用 Looper.prepare() 方法了。如下 Looper 类提供的 get 方法:

/**
 * Returns the application's main looper, which lives in the main thread of the application.
 */
public static Looper getMainLooper() {
    synchronized (Looper.class) {
        return sMainLooper;
    }
}

到这里,上面疑问的答案就显而易见了。同时,如果在子线程实例化 Handler,就必须要先调用Looper.prepare() 方法才可以。

到此先初步总结下上面关于 Handler 实例化的一些关键信息,具体如下:

  • 在主线程中可以直接创建 Handler 对象,而在子线程中需要先调用 Looper.prepare() 才能创建 Handler 对象,否则运行抛出 ”Can’t create handler inside thread that has not called Looper.prepare()” 异常信息。

  • 每个线程中最多只能有一个 Looper 对象,否则抛出异常。

  • 可以通过 Looper.myLooper() 获取当前线程的 Looper 实例,通过 Looper.getMainLooper() 获取主(UI)线程的 Looper 实例。

  • 一个 Looper 只能对应了一个M essageQueue 。

  • 一个线程中只有一个 Looper 实例,一个 MessageQueue 实例,可以有多个 Handler 实例。

Handler 对象也创建好了,接下来就该发送消息了 mHandler.sendMessage(message);

/**
 * Pushes a message onto the end of the message queue after all pending messages
 * before the current time. It will be received in {@link #handleMessage},
 * in the thread attached to this handler.
 *  
 * @return Returns true if the message was successfully placed in to the 
 *         message queue.  Returns false on failure, usually because the
 *         looper processing the message queue is exiting.
 */
public final boolean sendMessage(Message msg)
{
    return sendMessageDelayed(msg, 0);
}

嗯,继续往下看咯

/**
 * Enqueue a message into the message queue after all pending messages
 * before (current time + delayMillis). You will receive it in
 * {@link #handleMessage}, in the thread attached to this handler.
 *  
 * @return Returns true if the message was successfully placed in to the 
 *         message queue.  Returns false on failure, usually because the
 *         looper processing the message queue is exiting.  Note that a
 *         result of true does not mean the message will be processed -- if
 *         the looper is quit before the delivery time of the message
 *         occurs then the message will be dropped.
 */
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

最终走到了 sendMessageAtTime 这个方法

/**
 * Enqueue a message into the message queue after all pending messages
 * before the absolute time (in milliseconds) uptimeMillis.
 * The time-base is {@link android.os.SystemClock#uptimeMillis}.
 * Time spent in deep sleep will add an additional delay to execution.
 * You will receive it in {@link #handleMessage}, in the thread attached
 * to this handler.
 * 
 * @param uptimeMillis The absolute time at which the message should be
 *         delivered, using the
 *         {@link android.os.SystemClock#uptimeMillis} time-base.
 *         
 * @return Returns true if the message was successfully placed in to the 
 *         message queue.  Returns false on failure, usually because the
 *         looper processing the message queue is exiting.  Note that a
 *         result of true does not mean the message will be processed -- if
 *         the looper is quit before the delivery time of the message
 *         occurs then the message will be dropped.
 */
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;//mQueue是在Handler实例化时构造函数中实例化的
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

sendMessageAtTime() 方法接收两个参数,其中 msg 参数就是我们发送的 Message 对象,而uptimeMillis 参数则表示发送消息的时间,它的值等于自系统开机到当前时间的毫秒数再加上延迟时间,如果调用的不是 sendMessageDelayed() 方法,延迟时间就为0。

而 mQueue 是在 Handler 实例化时构造函数中实例化的,在 Handler 的构造函数中可以看见 mQueue = mLooper.mQueue ;而 Looper 的 mQueue 对象上面分析过了,是在 Looper 的构造函数中创建的一个MessageQueue。

最终的 MessageQueue 的 enqueueMessage() 方法是个嘛,下面看看

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

这个方法首先将我们要发送的消息 Message 的 target 属性设置为当前 Handler 对象(进行关联);接着将 msg 与 uptimeMillis 这两个参数都传递到 MessageQueue (消息队列)的 enqueueMessage() 方法中,如下

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {//上面的target已经是handler对象,not null
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();//设置当前msg的状态
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {//检测当前头指针是否为空(队列为空)或者没有设置when 或者设置的when比头指针的when要前
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            //几种情况要唤醒线程处理消息:1)队列是堵塞的 2)barrier,头部结点无target 3)当前msg是堵塞的
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next 将当前msg插入第一个比其when值大的结点前。
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

MessageQueue 消息队列对于消息排队是通过类似 C 语言的链表来存储这些有序的消息的。其中的 mMessages 对象表示当前待处理的消息;消息插入队列的实质就是将所有的消息按时间( uptimeMillis 参数,也就是 when )进行排序。具体的操作方法就根据时间的顺序调用 msg.next ,从而为每一个消息指定它的下一个消息是什么。

当然如果你是通过 sendMessageAtFrontOfQueue() 方法来发送消息的,它也会调用 enqueueMessage() 来让消息入队,只不过时间为0,这时会把 mMessages 赋值为新入队的这条消息,然后将这条消息的 next 指定为刚才的 mMessages ,这样也就完成了添加消息到队列头部的操作。

通过上面了解到,消息入队并不是按照我们的认知那样:入队入的是队尾,而是根据when 的大小来插入(头插是因为when = 0))

这里有一个小问题,大家可以自行考虑一下:当我利用 sendMessageDelayed() 方法延迟一段时间发送后,立马开启一个死循环,不停的 sendMessageAtFrontOfQueue() ,那么,之前的延迟发送的消息还会被执行到吗?

到此,消息也通过 handler 发送了,并且存到了 MessageQueue 中,那么,系统怎么处理 message 呢?

我们知道 MessageQueue 的对象在 Looper 构造函数中实例化的;一个 Looper 对应一个 MessageQueue,所以说 Handler 发送消息是通过 Handler 构造函数里拿到的 Looper 对象的成员 MessageQueue 的enqueueMessage 方法将消息插入队列,也就是说出队列一定也与 Handler 和 Looper 和 MessageQueue有关系。

既然会涉及到出队,那么肯定就有出队的方法,那么找来找去,就在 loop() 方法里面(为啥 UI Thread 没有调用 loop,loop 也会执行呢?一看就没有好好的看刚才贴的代码,明明已经调用,却说没有调用

Looper.prepareMainLooper(); 
...
Looper.loop();   

下回看代码用点心

/**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        msg.target.dispatchMessage(msg);

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

可以看到 for (;;) {} 就是一个死循环,然后不断的调用 next 方法(出队的方法)

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

同样,可以看到 for (;;) {},一个死循环

它的简单逻辑就是如果当前 MessageQueue 中存在 mMessages (即待处理消息),就将这个消息出队,然后让下一条消息成为 mMessages,否则就进入一个阻塞状态,一直等到有新的消息入队。

这里有个疑问,相信网友的回答应该能回答这个问题了。

另外,可以参考这里,里面有对 epoll_wait 的介绍。

继续 loop 方法,每当有一个消息出队就将它传递到 msg.target 的 dispatchMessage() 方法中。其中这个 msg.target 其实就是当前 Handler 对象

/**
 * Handle system messages here.
 */
public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

可以看见 dispatchMessage 方法中的逻辑比较简单,具体就是检查 Message 的 callback 是否为空,不为空,就通过 handleCallback() 方法处理消息。 Message 的 callback 是一个 Runnable 对象,就是handler 的 post 方法所传递的 Runnable 参数)不为空,handleCallback() 方法,如下

private static void handleCallback(Message message) {
    message.callback.run();
}

在这里,把没有讲到的一个方法列一下

/**
 * Causes the Runnable r to be added to the message queue.
 * The runnable will be run on the thread to which this handler is 
 * attached. 
 *  
 * @param r The Runnable that will be executed.
 * 
 * @return Returns true if the Runnable was successfully placed in to the 
 *         message queue.  Returns false on failure, usually because the
 *         looper processing the message queue is exiting.
 */
public final boolean post(Runnable r)
{
   return  sendMessageDelayed(getPostMessage(r), 0);
}

我们在使用的过程中,还可以采用上面的方法,那么问题来了,Runnable为何可以转变为Message呢,答案就在 getPostMessage(r) 中;

private static Message getPostMessage(Runnable r) {
    Message m = Message.obtain();
    m.callback = r;
    return m;
}

答案显而易见了,在结合上面的 dispatchMessage 方法,我们就更容易明白了。

否则,就检查 mCallback 是否为空,不为空就调用 Callback 的 handleMessage() 方法处理消息。mCallback 是一个接口,如下

/**
 * Callback interface you can use when instantiating a Handler to avoid
 * having to implement your own subclass of Handler.
 *
 * @param msg A {@link android.os.Message Message} object
 * @return True if no further handling is desired
 */
public interface Callback {
    public boolean handleMessage(Message msg);
}

通过注释可知,可以采用如下方式创建 Handler 对象: Handler handler = new Handler(callback)。对应的构造方法如下

/**
 * Constructor associates this handler with the {@link Looper} for the
 * current thread and takes a callback interface in which you can handle
 * messages.
 *
 * If this thread does not have a looper, this handler won't be able to receive messages
 * so an exception is thrown.
 *
 * @param callback The callback interface in which to handle messages, or null.
 */
public Handler(Callback callback) {
    this(callback, false);
}

Callback 的意义如同注释一般:可以用来创一个 Handler 的实例但不需要派生出 Handler 的子类。

因为在日常开发过程中,创建 Handler 最常见的方式就是派生一个 Handler 的子类并重写其handleMessage 方法来处理具体的消息,而Callback给我们提供了另外一种使用 Handler 的方式,当我们不想派生子类时,就可以通过 Callback 实现。

最后,调用 Handler 的 handleMessage 方法来处理消息。

为什么handleMessage() 方法中可以获取到之前发送的消息,这就是原因。

因此,一个最标准的异步消息处理线程的写法应该是这样(下面这段代码,就在 Looper 类的注释里面,注释往往很有用的哦,谷歌程序猿的某些注释也是很搞笑很认真的):

class LooperThread extends Thread {
  public Handler mHandler;

  public void run() {
      Looper.prepare();

      mHandler = new Handler() {
          public void handleMessage(Message msg) {
              // process incoming messages here
          }
      };

      Looper.loop();
  }
}

现在再看 handler 的架构图,是不是就更清晰了。

当我们在子线程调用 loop.prepare() 和 loop() 方法后,最好调用 loop.quit() 方法退出,终止消息循环,否则这个子线程就会一直处于等待状态。那么 quit 方法如下

/**
 * Quits the looper.
 * 

* Causes the {@link #loop} method to terminate without processing any * more messages in the message queue. *

* Any attempt to post messages to the queue after the looper is asked to quit will fail. * For example, the {@link Handler#sendMessage(Message)} method will return false. *

* Using this method may be unsafe because some messages may not be delivered * before the looper terminates. Consider using {@link #quitSafely} instead to ensure * that all pending work is completed in an orderly manner. *

* * @see #quitSafely */ public void quit() { mQueue.quit(false); }

再找

void quit(boolean safe) {
    if (!mQuitAllowed) {
        throw new IllegalStateException("Main thread not allowed to quit.");
    }

    synchronized (this) {
        if (mQuitting) {
            return;
        }
        mQuitting = true;

        if (safe) {
            removeAllFutureMessagesLocked();
        } else {
            removeAllMessagesLocked();
        }

        // We can assume mPtr != 0 because mQuitting was previously false.
        nativeWake(mPtr);
    }
}

我们知道,在子线程中调用 preare 时

public static void prepare() {
    prepare(true);
}

默认的是 true,也是就是说,子线程是可以退出的,而在 UI Thread 中

public static void prepareMainLooper() {
    prepare(false);//可以看出,UI thread传入的是false
    synchronized (Looper.class) {
        if (sMainLooper != null) {
            throw new IllegalStateException("The main Looper has already been prepared.");
        }
        sMainLooper = myLooper();
    }
}

传的 false,就是提示 UI Thread 是不可以退出的

回到 quit 方法继续看,可以发现实质就是对 mQuitting 标记置位,这个 mQuitting 标记在MessageQueue 的阻塞等待 next 方法中用做了判断条件,所以可以通过 quit 方法退出整个当前线程的loop 循环。

到此整个 Android 的一次完整异步消息机制分析使用流程结束。

前面涉及到的几个主要的类 Handler、Looper、MessageQueue 和 Message 的关系如下所述:

  • Handler 负责将 Looper 绑定到线程,初始化 Looper 和提供对外 API(我们在应用层,只关注这个,多么好的设计模式)。
  • Looper 负责消息循环和操作 MessageQueue 对象。
  • MessageQueue 实现了一个消息队列,好比那抽水泵,源源不断的处理 Message。
  • Message 是一次业务中所有参数的载体(里面还涉及到 Message 池,感兴趣的自己查阅源代码)。

重点

如果您看到了这里,那么今天分析 Handler、Loop 和 MessageQueue,主要是为了引出下面的这个东西 BlockCanary, 一个 Android 平台的一个非侵入式的性能监控组件,项目中已经打算性能优化专项中引入并解决相关性能问题,为了了解其原理,故整理了一下整个 Handler 的原理。该控件的相关说明在这里。

如果应用滑动卡顿,可以使用该控件进行监控(作者实现这个控件的原理,相比大家看过就会了解,很佩服作者在消息机制中发现了这么一个方式能够监控性能,同样是看过源码分析,差距还是很明显的,脑子不够开窍哇)

参考资料

Android开发艺术探索[M]. 电子工业出版社, 2015.372-390

android在线程中创建handler应注意什么 #44

Android异步消息处理机制完全解析,带你从源码的角度彻底理解

Android异步消息处理机制详解及源码分析

补充

Android 定时器实现的几种方式和removeCallbacks失效问题详解

上面这个链接主要是针对项目中,偶现无法正常 remove 的情况,有时候处理起来很费解,涉及到生命周期、多线程、是否会重建等比较多的方面,应该从代码的健壮性、项目的复杂性、线程切换、生命周期切换等很多方法考虑原因(具体问题具体分析,群策群力)。

你可能感兴趣的:(Android 消息机制学习)