Kafka源码分析-Consumer(10)-Fetcher

通过前面的介绍,我们知道了offset操作的原理。这一节主要介绍消费者如何从服务端获取消息,KafkaConsumer依赖Fetcher类实现此功能。Fetcher类的主要功能是发送FetchRequest请求,获取指定的消息集合,处理FetchResponse,更新消费位置。Fetcher类依赖的组件:


Kafka源码分析-Consumer(10)-Fetcher_第1张图片
image.png

Fetcher类核心字段:

  • client: ConsumerNetworkClient,负责网络通信。
  • minBytes:服务端收到FetchRequest后并不是立即响应,而是当可返回的消息数据积累到至少minBytes个字节时才能响应。这样每个FetchResponse中就包含多条消息,提高网络负载。
  • maxWaitMs:等待FetchResponse的最长时间,服务端根据此时间决定何时进行响应。
  • fetchSize:每次fetch操作的最大字节数。
  • maxPollRecords:每次获得Record的最大数量。
  • metadata: kafka 集群的元数据。
  • subscriptions:记录每个TopicPartition的消费情况。
  • completedFetches:List类型,每个FetchResponse首先会转换成CompletedFetch对象进入此队列缓存,这是并未解析消息。
  • keyDeserializer,valueDeserializer:key和value的反序列化器。
  • nextInLineRecords: PartitionRecords类型。PartitionRecords保存了CompletedFetch解析后的结果集合,其中有三个字段:records是消息集合,fetchOffset记录了records中第一个消息的offset, partition记录了消息对应的TopicPartition。
    Fetcher的核心方法分为三类:
  • fetch消息的相关方法,用于从Kafka获取消息;
  • 更新offset相关的方法,用于更新TopicPartitionState中的position字段;
  • 获取Metadata信息的方法,用于获取指定Topic的元信息。

Fetch消息

了解下FetchRequest和FetchResponse的消息体格式


Kafka源码分析-Consumer(10)-Fetcher_第2张图片
Fetch Request (1).jpg
Kafka源码分析-Consumer(10)-Fetcher_第3张图片
Fetch Response.jpg

FetchRequest字段:

名称 类型 含义
replica_id int 用来标识Follower的id,Consumer和Follower都会使用FetchRequest从Leader那里拉取消息,Consumer默认是-1
max_wait_time int 请求最大等待时间
min_bytes int 响应的最小负载
fetch_offset long 需要fetch的消息offset
max_bytes int 每次fetch的最大字节数

FetchResponse字段:
| high_watermark | long | Leader的high_watermark|
| record_set| byte数组 | fetch到的消息数据|
createFetchRequest()方法用来创建FetchRequest请求,返回值是Map类型,key是Node,value是发往对应Node的FetchRequest集合,核心逻辑如下:

  1. 按条件查找fetchable分区。查找条件如下:
  • 首先是分配给当前消费者的分区,即SubscriptionState.assign集合中有对应记录的分区。
  • 分区未标记为暂停且对应的TopicPartitionState.position不为空。
  • nextInLineRecords中没有来自此分区的消息。
  1. 查找每个fetchable分区的Leader副本所在的Node节点,因为只有分区的Leader副本才能处理读写请求。
  2. 根据步骤2查找到的Node节点,如果在unsent集合或InFlightRequest中的对应请求队列不为空,则不对此Node发送FetchRequest请求。
    4)通过SubscriptionState查找每个分区对应的position,并封装成PartitionData对象。
    5)最后按Node进行分类,将发往同一个Node节点的所有TopicPartition封装成一个FetchRequest对象。
    createFetchRequest()方法如下:
/**
     * Create fetch requests for all nodes for which we have assigned partitions
     * that have no existing requests in flight.
     */
    private Map createFetchRequests() {
        // create the fetch info
        Cluster cluster = metadata.fetch();//获取kafka集群数据
        Map> fetchable = new HashMap<>();
        //第一步:fetchablePartitions()按照一定的条件过滤后得到可以发送FetchRequest的分区
        for (TopicPartition partition : fetchablePartitions()) {
            //第二步:查找分区的Leader副本所在的Node
            Node node = cluster.leaderFor(partition);
            if (node == null) {
                metadata.requestUpdate();//如果找不到Leader副本则更新Metadata
                //第三步:是否还有pending请求
            } else if (this.client.pendingRequestCount(node) == 0) {
                // if there is a leader and no in-flight requests, issue a new fetch
                Map fetch = fetchable.get(node);
                if (fetch == null) {
                    fetch = new HashMap<>();
                    fetchable.put(node, fetch);
                }

                long position = this.subscriptions.position(partition);
                //第四步:记录每个分区的对应的position,即要fetch消息的offset
                fetch.put(partition, new FetchRequest.PartitionData(position, this.fetchSize));
                log.trace("Added fetch request for partition {} at offset {}", partition, position);
            }
        }

        // create the fetches 
        //第五步:对上面的fetchable集合进行转换,将发往同一个node节点的所有TopicPartition
        //的position信息封装成一个FetchRequest对象
        Map requests = new HashMap<>();
        for (Map.Entry> entry : fetchable.entrySet()) {
            Node node = entry.getKey();
            FetchRequest fetch = new FetchRequest(this.maxWaitMs, this.minBytes, entry.getValue());
            requests.put(node, fetch);
        }
        return requests;
    }

sendFetches()方法的主要功能是将FetchRequest添加到unsent集合中等待发送,并注册FetchResponse处理函数。然后对FetchResponse按TopicPartition分类解析,将获得到的消息数据(未解析的byte数组)和offset组装成CompletedFetch对象并添加到CompletedFetches。sendFetches()方法解析如下:

 /**
     * Set-up a fetch request for any node that we have assigned partitions for which doesn't already have
     * an in-flight fetch or pending fetch data.
     */
    public void sendFetches() {
        for (Map.Entry fetchEntry: createFetchRequests().entrySet()) {
            final FetchRequest request = fetchEntry.getValue();
            //将发往每个Node的FetchRequest都缓存到unsent队列上
            client.send(fetchEntry.getKey(), ApiKeys.FETCH, request)
                    //添加Listener,这是处理FetchResponse的入口
                    .addListener(new RequestFutureListener() {
                        @Override
                        public void onSuccess(ClientResponse resp) {
                            FetchResponse response = new FetchResponse(resp.responseBody());
                            Set partitions = new HashSet<>(response.responseData().keySet());
                            FetchResponseMetricAggregator metricAggregator = new FetchResponseMetricAggregator(sensors, partitions);
                            //遍历响应的数据
                            for (Map.Entry entry : response.responseData().entrySet()) {
                                TopicPartition partition = entry.getKey();
                                long fetchOffset = request.fetchData().get(partition).offset;
                                //FetchResponse.PartitionData类型
                                FetchResponse.PartitionData fetchData = entry.getValue();
                                //创建 CompletedFetch,并缓存到CompletedFetches队列中
                                completedFetches.add(new CompletedFetch(partition, fetchOffset, fetchData, metricAggregator));
                            }

                            sensors.fetchLatency.record(resp.requestLatencyMs());
                            sensors.fetchThrottleTimeSensor.record(response.getThrottleTime());
                        }

                        @Override
                        public void onFailure(RuntimeException e) {
                            log.debug("Fetch failed", e);
                        }
                    });
        }
    }

但是存储在CompletedFetches队列中的数据还是未解析的FetchResponse.PartitionData对象。在fetchedRecords()方法中会将CompletedFetch中的消息数据进行解析,得到Record集合并返回,同时还会修改对应的TopicPartitionState的position,为下次操作做准备,fetchedRecords()方法代码如下:

 /**
     * Return the fetched records, empty the record buffer and update the consumed position.
     *
     * NOTE: returning empty records guarantees the consumed position are NOT updated.
     *
     * @return The fetched records per partition
     * @throws OffsetOutOfRangeException If there is OffsetOutOfRange error in fetchResponse and
     *         the defaultResetPolicy is NONE
     */
    public Map>> fetchedRecords() {
        if (this.subscriptions.partitionAssignmentNeeded()) {
            return Collections.emptyMap();//需要进行Rebalance操作则返回空集合
        } else {
            //按照TopicPartition进行分类
            Map>> drained = new HashMap<>();
            //一次最多取出maxPollRecords条消息
            int recordsRemaining = maxPollRecords;
            //completedFetches集合的迭代器
            Iterator completedFetchesIterator = completedFetches.iterator();

            while (recordsRemaining > 0) {//遍历completedFetches集合
                if (nextInLineRecords == null || nextInLineRecords.isEmpty()) {
                    if (!completedFetchesIterator.hasNext())
                        break;

                    CompletedFetch completion = completedFetchesIterator.next();
                    completedFetchesIterator.remove();
                    //解析CompletedFetch得到一个PartitionRecords对象
                    nextInLineRecords = parseFetchedData(completion);
                } else {
                    //将nextInLineRecords中的消息添加到drained中
                    recordsRemaining -= append(drained, nextInLineRecords, recordsRemaining);
                }
            }

            return drained;//将结果集合返回
        }
    }

/**
     * The callback for fetch completion  解析CompletedFetch
     */
    private PartitionRecords parseFetchedData(CompletedFetch completedFetch) {
        TopicPartition tp = completedFetch.partition;
        FetchResponse.PartitionData partition = completedFetch.partitionData;
        long fetchOffset = completedFetch.fetchedOffset;
        int bytes = 0;
        int recordsCount = 0;
        PartitionRecords parsedRecords = null;

        try {
            if (!subscriptions.isFetchable(tp)) {
                // this can happen when a rebalance happened or a partition consumption paused
                // while fetch is still in-flight
                log.debug("Ignoring fetched records for partition {} since it is no longer fetchable", tp);
            } else if (partition.errorCode == Errors.NONE.code()) {
                // we are interested in this fetch only if the beginning offset matches the
                // current consumed position
                Long position = subscriptions.position(tp);
                if (position == null || position != fetchOffset) {
                    log.debug("Discarding stale fetch response for partition {} since its offset {} does not match " +
                            "the expected offset {}", tp, fetchOffset, position);
                    return null;
                }

                ByteBuffer buffer = partition.recordSet;
                //创建MemoryRecords,其中的ByteBuffer来自FetchResponse
                MemoryRecords records = MemoryRecords.readableRecords(buffer);
                List> parsed = new ArrayList<>();
                boolean skippedRecords = false;
                //遍历创建MemoryRecords获取Record集合。
                for (LogEntry logEntry : records) {
                    // Skip the messages earlier than current position.
                    //跳过早于position的消息
                    if (logEntry.offset() >= position) {
                        parsed.add(parseRecord(tp, logEntry));
                        bytes += logEntry.size();
                    } else {
                        skippedRecords = true;
                    }
                }

                recordsCount = parsed.size();
                this.sensors.recordTopicFetchMetrics(tp.topic(), bytes, recordsCount);

                if (!parsed.isEmpty()) {
                    log.trace("Adding fetched record for partition {} with offset {} to buffered record list", tp, position);
                    //将解析后的Record集合封装成PartitionRecords
                    parsedRecords = new PartitionRecords<>(fetchOffset, tp, parsed);
                    ConsumerRecord record = parsed.get(parsed.size() - 1);
                    this.sensors.recordsFetchLag.record(partition.highWatermark - record.offset());
                } else if (buffer.limit() > 0 && !skippedRecords) {
                    // we did not read a single message from a non-empty buffer
                    // because that message's size is larger than fetch size, in this case
                    // record this exception
                    Map recordTooLargePartitions = Collections.singletonMap(tp, fetchOffset);
                    throw new RecordTooLargeException("There are some messages at [Partition=Offset]: "
                            + recordTooLargePartitions
                            + " whose size is larger than the fetch size "
                            + this.fetchSize
                            + " and hence cannot be ever returned."
                            + " Increase the fetch size on the client (using max.partition.fetch.bytes),"
                            + " or decrease the maximum message size the broker will allow (using message.max.bytes).",
                            recordTooLargePartitions);
                }
            } else if (partition.errorCode == Errors.NOT_LEADER_FOR_PARTITION.code()
                    || partition.errorCode == Errors.UNKNOWN_TOPIC_OR_PARTITION.code()) {
                this.metadata.requestUpdate();
            } else if (partition.errorCode == Errors.OFFSET_OUT_OF_RANGE.code()) {
                if (fetchOffset != subscriptions.position(tp)) {
                    log.debug("Discarding stale fetch response for partition {} since the fetched offset {}" +
                            "does not match the current offset {}", tp, fetchOffset, subscriptions.position(tp));
                } else if (subscriptions.hasDefaultOffsetResetPolicy()) {
                    log.info("Fetch offset {} is out of range for partition {}, resetting offset", fetchOffset, tp);
                    subscriptions.needOffsetReset(tp);
                } else {
                    throw new OffsetOutOfRangeException(Collections.singletonMap(tp, fetchOffset));
                }
            } else if (partition.errorCode == Errors.TOPIC_AUTHORIZATION_FAILED.code()) {
                log.warn("Not authorized to read from topic {}.", tp.topic());
                throw new TopicAuthorizationException(Collections.singleton(tp.topic()));
            } else if (partition.errorCode == Errors.UNKNOWN.code()) {
                log.warn("Unknown error fetching data for topic-partition {}", tp);
            } else {
                throw new IllegalStateException("Unexpected error code " + partition.errorCode + " while fetching data");
            }
        } finally {
            completedFetch.metricAggregator.record(tp, bytes, recordsCount);
        }

        return parsedRecords;
    }

//在fetchedRecords()方法中将消息添加到drained集合中,还更新了TopicPartitionState的position字段。
    private int append(Map>> drained,
                       PartitionRecords partitionRecords,
                       int maxRecords) {
        if (partitionRecords.isEmpty())
            return 0;

        if (!subscriptions.isAssigned(partitionRecords.partition)) {
            // this can happen when a rebalance happened before fetched records are returned to the consumer's poll call
            log.debug("Not returning fetched records for partition {} since it is no longer assigned", partitionRecords.partition);
        } else {
            // note that the consumed position should always be available as long as the partition is still assigned
            long position = subscriptions.position(partitionRecords.partition);
            if (!subscriptions.isFetchable(partitionRecords.partition)) {
                // this can happen when a partition is paused before fetched records are returned to the consumer's poll call
                log.debug("Not returning fetched records for assigned partition {} since it is no longer fetchable", partitionRecords.partition);
            } else if (partitionRecords.fetchOffset == position) {
                // we are ensured to have at least one record since we already checked for emptiness
                //获取消息集合,最多maxRecords个消息
                List> partRecords = partitionRecords.take(maxRecords);
                
                long nextOffset = partRecords.get(partRecords.size() - 1).offset() + 1;//最后一个消息的offset

                log.trace("Returning fetched records at offset {} for assigned partition {} and update " +
                        "position to {}", position, partitionRecords.partition, nextOffset);

                List> records = drained.get(partitionRecords.partition);
                if (records == null) {
                    records = partRecords;
                    drained.put(partitionRecords.partition, records);
                } else {
                    records.addAll(partRecords);
                }
                //更新SubscriptionState对应的TopicPartitionState的position字段
                subscriptions.position(partitionRecords.partition, nextOffset);
                return partRecords.size();
            } else {
                // these records aren't next in line based on the last consumed position, ignore them
                // they must be from an obsolete request
                log.debug("Ignoring fetched records for {} at offset {} since the current position is {}",
                        partitionRecords.partition, partitionRecords.fetchOffset, position);
            }
        }

        partitionRecords.discard();
        return 0;
    }

parseFetchedData()方法中使用了MemoryRecords迭代器遍历消息,这里涉及到了压缩消息的处理,下个章节再介绍。

更新position

第一次消费某个Topic分区,服务器内部Offsets Topic中并没有记录当前消费者在此分区上的消费位置,所以消费者无法从服务器获取最近提交的offset。此时如果用户手动指定消费者的起始offset,则可以从指定offset开始消费,否则不然就需要重置TopicPartitionState.position字段。
重置TopicPartitionState.position字段的过程中涉及到OffsetsRequest和OffsetsResponse,格式如下:OffsetsRequest需要说明的字段是timestamp,取值为-1和-2,分别表示LATEST,EARLIEST两种重置策略。OffsetsResponse需要说明的是offsets,它是服务端返回的offset集合。


Kafka源码分析-Consumer(10)-Fetcher_第4张图片
Offsets Request.jpg
Kafka源码分析-Consumer(10)-Fetcher_第5张图片
OffsetFetch Response.jpg

Fetcher.updateFetchPositions()方法中实现了重置,实现逻辑如下:
1)检测position是否为空,如果非空则不需要进行重置操作。
2)如果设置了resetStrategy,则按照指定的重置策略进行重置操作。
3)有LATEST,EARLIEST两种重置策略:EARLIEST是将position重置为当前最小的offset;而LATEST是将position重置为当前最大的offset。
4)LATEST,EARLIEST两种重置策略都会向GroupCoordinator发送OffsetsRequest,请求指定offset。OffsetsRequest的发送逻辑和OffsetsResponse的处理逻辑跟上面的类似。
5)如果没有指定重置策略,则将position重置为committed。

  1. 如果committed为空,则使用默认的重置策略。默认重置策略是LATEST策略。
    Fetcher.updateFetchPositions()具体实现如下:
/**
     * Update the fetch positions for the provided partitions.
     * @param partitions the partitions to update positions for
     * @throws NoOffsetForPartitionException If no offset is stored for a given partition and no reset policy is available
     */
    public void updateFetchPositions(Set partitions) {
        // reset the fetch position to the committed position

        for (TopicPartition tp : partitions) {
            //检测position是否为空,如果非空则不需要进行重置操作。
            if (!subscriptions.isAssigned(tp) || subscriptions.isFetchable(tp))
                continue;

            if (subscriptions.isOffsetResetNeeded(tp)) {
                //按照指定的重置策略进行重置操作。
                resetOffset(tp);
            } else if (subscriptions.committed(tp) == null) {
                //如果committed为空,则使用默认的重置策略
                // there's no committed position, so we need to reset with the default strategy
                subscriptions.needOffsetReset(tp);
                resetOffset(tp);
            } else {
                //如果没有指定重置策略且subscriptions.committed(tp)不为空  ,则将position重置为committed。
                long committed = subscriptions.committed(tp).offset();
                log.debug("Resetting offset for partition {} to the committed offset {}", tp, committed);
                subscriptions.seek(tp, committed);
            }
        }
    }

listOffset()方法实现了对OffsetsRequest的发送和OffsetsResponse的处理,与前面介绍的类似。

获取集群元数据

Fetcher中还提供了获取Metadata信息的相关方法。涉及sendMetadataRequest(),getTopicMetadata(),getAllTopicMetadata()三个方法。
基本逻辑是发送MetadataRequest请求到负载最小的Node节点,并阻塞等待MetadataResponse,正常收到响应后对其解析,得到集群元数据。
需要注意的是,Fetcher提供的这三个获取集群元数据的方法并不会更新Fetcher.metadata字段中保存的集群元数据。第二章介绍过,更新Metadata使用的事NetworkClient.DefaultMetadataUpdater,同样也是发送MetadataRequest请求。

你可能感兴趣的:(Kafka源码分析-Consumer(10)-Fetcher)