Spark 优化GroupByKey产生RDD[(K, Iterable[V])]

RDD触发机制

在spark中,RDD Action操作,是由SparkContext来触发的. 通过scala Iterator来实现.

  /**
   * Return a new RDD by applying a function to all elements of this RDD.
   */
  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
  }

  /**
   *  Return a new RDD by first applying a function to all elements of this
   *  RDD, and then flattening the results.
   */
  def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
  }

  /**
   * Return a new RDD containing only the elements that satisfy a predicate.
   */
  def filter(f: T => Boolean): RDD[T] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[T, T](
      this,
      (context, pid, iter) => iter.filter(cleanF),
      preservesPartitioning = true)
  }

GroupByKey分析

GroupByKey是一个非常耗资源的操作,shuffle之后,每个key分组之后的数据,会缓存在内存中,也就是Iterable[V].

 def groupByKey(): RDD[(K, Iterable[V])] = self.withScope {
    groupByKey(defaultPartitioner(self))
  }

   def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
    // groupByKey shouldn't use map side combine because map side combine does not
    // reduce the amount of data shuffled and requires all map side data be inserted
    // into a hash table, leading to more objects in the old gen.
    val createCombiner = (v: V) => CompactBuffer(v)
    val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
    val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
    val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
    bufs.asInstanceOf[RDD[(K, Iterable[V])]]
  }

如果对RDD[(K, Iterable[V])].在进行flatMap的操作,比如每10条统计一个结果,就会出现问题.

eg:

val sc = new SparkConf().setAppName("demo").setMaster("local[1]")
    val sparkContext =new SparkContext(sc)
    val rdd =  sparkContext.makeRDD(Seq(
      ("wang",25),("wang",26),("wang",18),("wang",15),("wang",7),("wang",1)
      ))
        .groupByKey().flatMap(kv=>{

      var i =0
      kv._2.map(r=>{

        i=i+1
        println(r)
        r
      })


    })

    sparkContext.runJob(rdd,add _)


    def add(list:Iterator[Int]): Unit ={

      var i=0
      val items = new mutable.MutableList[Int]()
      while(list.hasNext){
        items.+=(list.next())
        if(i>=2){
          println(items.mkString(","))
          items.clear()
          i=0
        }else if(!list.hasNext){
          println(items.mkString(","))
        }
        i=i+1
      }

    }

结果:

  25
  26
  18
  15
  7
  1
  25,26,18
  15,7
  1
val sc = new SparkConf().setAppName("demo").setMaster("local[1]")
    val sparkContext =new SparkContext(sc)
    val rdd =  sparkContext.makeRDD(Seq(
      ("wang",25),("wang",26),("wang",18),("wang",15),("wang",7),("wang",1)
      ))
        .groupByKey().flatMap(kv=>{

      var i =0
      kv._2.toIterator.map(r=>{

        i=i+1
        println(r)
        r
      })


    })

    sparkContext.runJob(rdd,add _)


    def add(list:Iterator[Int]): Unit ={

      var i=0
      val items = new mutable.MutableList[Int]()
      while(list.hasNext){
        items.+=(list.next())
        if(i>=2){
          println(items.mkString(","))
          items.clear()
          i=0
        }else if(!list.hasNext){
          println(items.mkString(","))
        }
        i=i+1
      }
    }

结果:

  25
  26
  18
  25,26,18
  15
  7
  15,7
  1
  1

结论

RDD[(K, Iterable[V])].flatMap直接用Iterable,那么在Action就没法进行控制,只能flatMap里面所有数据执行完之后,才能执行后面操作

你可能感兴趣的:(Spark 优化GroupByKey产生RDD[(K, Iterable[V])])