给定 \(N \times N\) 棋盘,某些格子是障碍,问可以放置的互不侵犯的马的个数
黑白染色后建立二分图,求最大独立集 = 总点数 - 最大匹配数
注意把反边也连上会WA掉(脑抽一发血)
#include
using namespace std;
// Input: make(u,v,w)
// Solver: int solve(s,t);
// Output: ans(returned)
namespace flow {
const int maxn = 300005;
const int inf = 1e+9;
int dis[maxn], ans, cnt = 1, s, t, pre[maxn * 10], nxt[maxn * 10], h[maxn], v[maxn * 10];
std::queue q;
void make(int x, int y, int z) {
pre[++cnt] = y, nxt[cnt] = h[x], h[x] = cnt, v[cnt] = z;
pre[++cnt] = x, nxt[cnt] = h[y], h[y] = cnt;
}
bool bfs() {
memset(dis, 0, sizeof dis);
q.push(s), dis[s] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i; i = nxt[i])
if (!dis[pre[i]] && v[i])
dis[pre[i]] = dis[x] + 1, q.push(pre[i]);
}
return dis[t];
}
int dfs(int x, int flow) {
if (x == t || !flow)
return flow;
int f = flow;
for (int i = h[x]; i; i = nxt[i])
if (v[i] && dis[pre[i]] > dis[x]) {
int y = dfs(pre[i], min(v[i], f));
f -= y, v[i] -= y, v[i ^ 1] += y;
if (!f)
return flow;
}
if (f == flow)
dis[x] = -1;
return flow - f;
}
int solve(int _s,int _t) {
s=_s;
t=_t;
ans = 0;
for (; bfs(); ans += dfs(s, inf));
return ans;
}
}
int n,cnt;
char s[205][205];
const int dx[9]={0,1,1,-1,-1,2,2,-2,-2};
const int dy[9]={0,2,-2,2,-2,1,-1,1,-1};
int check(int i,int j) {
if(i>0 && j>0 && i<=n && j<=n && s[i][j]=='0') return 1;
return 0;
}
int main() {
cin>>n;
for(int i=1;i<=n;i++) cin>>s[i]+1;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
if(check(i,j)) {
++cnt;
if((i+j)&1) flow::make(n*n+1,i*n-n+j,1);
else flow::make(i*n-n+j,n*n+2,1);
}
if((i+j)&1) for(int k=1;k<=8;k++) {
int p=i+dx[k],q=j+dy[k];
if(check(i,j) && check(p,q)) {
flow::make(i*n-n+j,p*n-n+q,1);
}
}
}
}
cout<