Clutter detection using the Gabella approach

#!/usr/bin/env python
# Copyright (c) 2016, wradlib developers.
# Distributed under the MIT License. See LICENSE.txt for more info.
# 引用wradlib 雷达数据处理库函数- 学习......
"""
Clutter Identification 地物杂波识别
^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:
   :toctree: generated/

   filter_gabella
   filter_gabella_a   对应step1
   filter_gabella_b   对应step2

"""
import numpy as np
import scipy.ndimage as ndi
from . import dp as dp
from . import util as util


def filter_gabella_a(img, wsize, tr1, cartesian=False, radial=False):
    r"""First part of the Gabella filter looking for large reflectivity
    gradients.

    This function checks for each pixel in `img` how many pixels surrounding
    it in a window of `wsize` are by `tr1` smaller than the central pixel.

    Parameters
    ----------
    img : array_like
        radar image to which the filter is to be applied
    wsize : int
        Size of the window surrounding the central pixel
    tr1 : float
        Threshold value   =  6dBZ
    cartesian : boolean
        Specify if the input grid is Cartesian or polar
    radial : boolean
        Specify if only radial information should be used

    Returns
    -------
    output : array_like
        an array with the same shape as `img`, containing the filter's results.

    See Also
    --------
    filter_gabella_b : the second part of the filter
    filter_gabella : the complete filter

    Examples
    --------

    See :ref:`notebooks/classify/wradlib_clutter_gabella_example.ipynb`.

    """
    nn = wsize // 2
    count = -np.ones(img.shape, dtype=int)
    range_shift = range(-nn, nn + 1)
    azimuth_shift = range(-nn, nn + 1)
    if radial:
        azimuth_shift = [0]
    for sa in azimuth_shift:
        refa = np.roll(img, sa, axis=0)
        for sr in range_shift:
            refr = np.roll(refa, sr, axis=1)
            count += (img - refr < tr1)(程序比较差值的美妙之处)
    count[:, 0:nn] = wsize ** 2
    count[:, -nn:] = wsize ** 2
    if cartesian:
        count[0:nn, :] = wsize ** 2
        count[-nn:, :] = wsize ** 2
    return count


def filter_gabella_b(img, thrs=0.):
    r"""Second part of the Gabella filter comparing area to circumference of
    contiguous echo regions.

    Parameters
    ----------
    img : array_like
    thrs : float
        Threshold below which the field values will be considered as no rain

    Returns
    -------
    output : array_like
        contains in each pixel the ratio between area and circumference of the
        meteorological echo it is assigned to or 0 for non precipitation
        pixels.

    See Also
    --------
    filter_gabella_a : the first part of the filter
    filter_gabella : the complete filter

    Examples
    --------

    See :ref:`notebooks/classify/wradlib_clutter_gabella_example.ipynb`.

    """
    conn = np.ones((3, 3))
    # create binary image of the rainfall field
    binimg = img > thrs
    # label objects (individual rain cells, so to say)
    labelimg, nlabels = ndi.label(binimg, conn)
    # erode the image, thus removing the 'boundary pixels'
    binimg_erode = ndi.binary_erosion(binimg, structure=conn)
    # determine the size of each object
    labelhist, edges = np.histogram(labelimg,
                                    bins=nlabels + 1,
                                    range=(-0.5, labelimg.max() + 0.5))
    # determine the size of the eroded objects
    erodelabelhist, edges = np.histogram(np.where(binimg_erode, labelimg, 0),
                                         bins=nlabels + 1,
                                         range=(-0.5, labelimg.max() + 0.5))
    # the boundary is the difference between these two
    boundarypixels = labelhist - erodelabelhist
    # now get the ratio between object size and boundary
    ratio = labelhist.astype(np.float32) / boundarypixels
    # assign it back to the objects
    # first get the indices
    indices = np.digitize(labelimg.ravel(), edges) - 1
    # then produce a new field with the ratios in the right place
    result = ratio[indices.ravel()].reshape(img.shape)

    return result


def filter_gabella(img, wsize=5, thrsnorain=0., tr1=6., n_p=6, tr2=1.3,
                   rm_nans=True, radial=False, cartesian=False):
    r"""Clutter identification filter developed by :cite:`Gabella2002`.

    This is a two-part identification algorithm using echo continuity and
    minimum echo area to distinguish between meteorological (rain) and non-
    meteorological echos (ground clutter etc.)

    Parameters
    ----------
    img : array_like
    wsize : int
        Size of the window surrounding the central pixel
    thrsnorain : float
    tr1 : float
    n_p : int
    tr2 : float
    rm_nans : boolean
        True replaces nans with Inf
        False takes nans into acount
    radial : boolean
        True to use radial information only in filter_gabella_a.
    cartesian : boolean
        True if cartesian data are used, polar assumed if False.

    Returns
    -------
    output : array
        boolean array with pixels identified as clutter set to True.

    See Also
    --------
    filter_gabella_a : the first part of the filter
    filter_gabella_b : the second part of the filter

    Examples
    --------

    See :ref:`notebooks/classify/wradlib_clutter_gabella_example.ipynb`.

    """
    bad = np.isnan(img)
    if rm_nans:
        img = img.copy()
        img[bad] = np.Inf
    ntr1 = filter_gabella_a(img, wsize, tr1, cartesian, radial)
    if not rm_nans:
        f_good = ndi.filters.uniform_filter((~bad).astype(float), size=wsize)
        f_good[f_good == 0] = 1e-10
        ntr1 = ntr1 / f_good
        ntr1[bad] = n_p
    clutter1 = (ntr1 < n_p)
    ratio = filter_gabella_b(img, thrsnorain)
    clutter2 = (np.abs(ratio) < tr2)
    return clutter1 | clutter2

你可能感兴趣的:(Clutter detection using the Gabella approach)