- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 《聚类算法》入门--大白话篇:像整理房间一样给数据分类
一、什么是聚类算法?想象一下你的衣柜里堆满了衣服,但你不想一件件整理。聚类算法就像一个聪明的助手,它能自动帮你把衣服分成几堆:T恤放一堆、裤子放一堆、外套放一堆。它通过观察衣服的颜色、大小、款式这些特征,把相似的放在一起,不相似的分开。在计算机世界里,聚类算法就是帮我们把杂乱的数据分成有意义的组。它不需要提前知道答案(这就是"无监督学习"),而是像侦探一样,从数据中发现隐藏的规律。二、最常见的三种
- 【PyCharm 使用技巧】PyCharm 基本功能详解 || 【Jupyter Notebook】如何进入其它盘,如D盘?H盘?|| 【机器学习】聚类算法详解及其应用 || 道路交通流量模拟预测
追光者♂
Python从入门到人工智能工具技巧解决办法百题千解计划(项目实战案例)PyCharm使用技巧Jupyter如何进入其它盘聚类算法练习PyCharm详解时空交通流预测模拟
作者主页:追光者♂个人简介:在读计算机专业硕士研究生、CSDN-人工智能领域新星创作者、2022年CSDN博客之星人工智能领域TOP4、阿里云社区专家博主【无限进步,一起追光!】欢迎点赞收藏⭐留言本篇的目录一,是请看目录四——PyCharm基础设置回顾的续篇,继续记录讲解PyCharm的基本功能。目录二回顾了在使用Jupyter时的问题。目录三练习了机器学习算法中的聚类算法。目录一、再次了解PyC
- 算法思想之广度优先搜索(BFS)及示例(亲子游戏)
墨鸦_Cormorant
算法算法宽度优先游戏
广度优先搜索广度优先算法,又称广度优先搜索算法,是最简便的图的算法之一,其特点是:在扫描数据空间时,每个点以最短路径生成广度优先生成树。广度优先搜索这种算法遍历整个图的所有节点并记录,直至找到所需结果为止,是一种盲目算法,但它还有一个非常重要的特性一最佳解,即当所有的边长相等,它就是最佳解,若在距离聚类算法中,应用广度优先搜索此特性去搜寻数据对象的同类,则可以有效地提高聚类速度。此外,可以把网格单
- DAY 17 常见聚类算法
yizhimie37
python训练营打卡笔记机器学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710day17笔记全流程(可点开下载)#导入必要的库importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarnings#忽略警告信息,使输出更整洁warnings.filterwarnings("ign
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- python中Scikit-learn模块介绍
不会仰游的河马君
pythonpythonscikit-learn开发语言
Scikit-learn是Python中一个开源的机器学习库,它提供了简单高效的工具,用于数据挖掘和数据分析。该库包含了各种分类、回归、聚类算法,以及数据预处理、模型选择、模型评估等功能。Scikit-learn的特点是接口统一、使用简单、运行高效,并且有一个活跃的社区不断维护和更新。它广泛应用于数据科学、机器学习、人工智能等领域。应用和发展趋势Scikit-learn在机器学习和数据科学领域的应
- BIRCH、K-Means、KNN聚类算法实战:二维坐标空间聚类分析
闲书郎
本文还有配套的精品资源,点击获取简介:本项目深入探讨BIRCH、K-Means、K-Means++和K-NearestNeighbors(KNN)四种聚类算法在二维坐标空间中的应用与分析。通过Python代码实现,项目着重介绍算法的运行机制,以及它们在聚类任务中的效果和优缺点。测试集包含二维坐标数据,通过比较不同算法处理效果,学习者将加深对算法的理解,并为未来的数据分析工作打下基础。1.聚类算法在
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- K均值聚类例题
phoenix@Capricornus
均值算法聚类机器学习
给定5个样本的样本矩阵X⊤=[0015520002]{\bmX}^\top=\begin{bmatrix}0&0&1&5&5\\2&0&0&0&2\end{bmatrix}X⊤=[0200105052]使用KKK均值聚类算法将样本聚到两个类中。选择两个样本点x1=(0,2)⊤{\bmx}_1=(0,2)^\topx1=(0,2)⊤,x2=(0,0)⊤{\bmx}_2=(0,0)^\topx2=(0
- 【Python】机器学习:Scikit-learn、Statsmodels
机器学习:Scikit-learn、Statsmodels文章目录机器学习:Scikit-learn、Statsmodels1.**Scikit-learn****主要功能****核心模块****常用功能及代码示例**1.**数据预处理**2.**分类算法**3.**回归算法**4.**聚类算法**5.**模型选择**6.**Pipeline**2.**Statsmodels****主要功能***
- 机器学习15-2(Mini Batch Kmeans)
Roy_Allen
MachineL机器学习batchkmeans
文章目录简介MiniBatchK-MeansDBSCAN基本原理具体实现简介除了K-Means快速聚类意外,还有两种常用的聚类算法能够进一步提升快速聚类的速度的MiniBatchK-Means算法能够和K-Means快速聚类形成性能上互补的算法DBSCAN密度聚类MiniBatchK-Means非常抱歉,需要先来一段理论基础做铺垫,速览即可!在K-Means的基础上增加了一个MiniBatch的抽
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- 《Sklearn 机器学习模型--分类模型》--K-means 聚类(K-means clustering algorithm)
非门由也
机器学习数据分析机器学习sklearn分类
K-means聚类算法K-means聚类算法是一种基于划分的无监督学习算法,通过迭代优化将数据划分为指定簇数(K值),使同一簇内样本相似度最大化、簇间差异最大化34。以下从算法原理、实现步骤、应用场景及优缺点展开说明:一、核心原理与实现步骤核心原理K-均值聚类(K-MeansClustering)是一种无监督学习算法,其基本思想是将数据集划分为K个不同的簇,使得每个样本点都属于离它最近的簇中心。
- 基于PCA和Kmeans的餐馆地区分类研究
1.实践任务说明对《中国2019年分地区连锁餐饮企业数据》中的7个经营指标(V2-V8)进行主成分分析(PCA),通过降维提取核心特征。首先标准化数据,然后计算主成分的方差贡献率,按累积贡献率≥85%确定保留的主成分数量,最终输出降维后的主成分得分及因子载荷矩阵,简化后续分析。基于K-Means聚类算法对餐饮企业数据进行分析,首先读取true_restaurant.csv文件中的PC1指标数据并进
- 农产品产量智能预测(聚类实际落地场景)
数字化与智能化
机器学习场景落地-智慧农业聚类机器学习
聚类算法在农产品产量智能预测中可通过对多维度数据的分类与模式识别,为产量预测提供更精准的分析基础,其应用场景主要涉及数据预处理、影响因素分析、产量区域划分等多个关键环节,以下是具体介绍:1、数据预处理与特征提取【1】数据清洗与分类农产品产量相关数据(如气象数据、土壤指标、历史产量等)常存在噪声或缺失值,聚类算法可对同类数据进行聚合,识别异常数据点,提升数据质量。例如:利用K-means算法对不同年
- 使用Python实现层次聚类算法
Echo_Wish
从零开始学Python人工智能Python笔记算法python聚类
层次聚类(HierarchicalClustering)算法是一种基于树形结构的聚类方法,它将数据点逐渐合并成越来越大的簇,直到所有数据点都合并到一个簇中。在本文中,我们将使用Python来实现一个基本的层次聚类算法,并介绍其原理和实现过程。什么是层次聚类算法?层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算数据点之间的相似度(距离)来构建一个树形结构,其中每个节点代表一个簇。在自底向上
- 聚类分析现状
云cia
机器学习人工智能
针对上述问题,一种结合降维技术和聚类算法的解决方案被广泛认可,即先采用降维技术,如主成分分析、局部线性嵌入或核方法等对数据进行降维,再对降维后的特征进行聚类.该方案虽然在一定程度上降低了高维空间的聚类难度,但由于数据降维是独立于聚类任务的,这意味着提取的特征往往并不具备簇类结构.子空间方法则提供另一种很好的思路.该方法假设高维数据分布于多个低维子空间的组合,通过将高维数据分割到各自所属的本征低维子
- 聚类算法之DBScan(Java实现)
weixin_33873846
人工智能java
DBScan是一种基于密度的聚类算法,它有一个核心点的概念:如果一个点,在距它Eps的范围内有不少于MinPts个点,则该点就是核心点。核心和它Eps范围内的邻居形成一个簇。在一个簇内如果出现多个点都是核心点,则以这些核心点为中心的簇要合并。下图给出DBScan的聚类结果:可以看到DBScan可以发现噪声,即它把(3,14)判定为噪声。到这里你一定有个疑问:为什么(8,3)一个点形成了一个簇,不是
- RAPTOR:如何用树状结构重塑RAG检索能力?
阿牛大牛中
LLMLLMRAGRAPTOR大语言模型树状结构
文章目录1.背景1.1长尾知识问题2.核心3.方法3.1RAPTOR的核心流程框架3.2聚类算法3.2.1聚类的作用与目标3.2.2软聚类(SoftClustering)的独特性3.2.3算法选择:高斯混合模型(GMM)3.2.4高维向量嵌入的降维处理(UMAP)3.2.5当一个聚类内容太长时怎么办?3.2.6如何选择聚类数量?(自动确定聚类数)3.3两种检索策略3.3.1TreeTraversa
- 聚类算法性能对比:K-means vs DBSCAN vs 层次聚类
AI智能探索者
算法聚类kmeansai
聚类算法性能对比:K-meansvsDBSCANvs层次聚类关键词:聚类算法、K-means、DBSCAN、层次聚类、性能对比、机器学习、无监督学习摘要:聚类是无监督学习的核心任务之一,广泛应用于用户分群、图像分割、异常检测等场景。本文将用“分水果”“找朋友”“建家谱”等生活化比喻,从原理、优缺点到实战场景,一步一步对比K-means、DBSCAN、层次聚类三种主流算法。无论你是刚入门的机器学习爱
- 聚类算法参数调优指南:如何获得最佳分组效果
AIGC应用创新大全
算法聚类数据挖掘ai
聚类算法参数调优指南:如何获得最佳分组效果关键词:聚类算法、参数调优、K-means、DBSCAN、轮廓系数、Calinski-Harabasz、高维数据摘要:聚类算法是无监督学习的核心工具,广泛用于用户分群、图像分割、异常检测等场景。但很多人发现:即使选对了算法,参数设置不当也会导致“分组混乱”或“簇无意义”。本文将用“分糖果”“找人群”等生活案例,结合Python代码实战,从底层逻辑到调优技巧
- 机器学习——聚类算法
Xyz_Overlord
机器学习算法聚类
一、聚类的概念根据样本之间的相似性,将样本划分到不同的类别中的一种无监督学习算法。细节:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。计算样本和样本之间的相似性,一般使用欧式距离。二、聚类算法分类根据聚类颗粒度分类:细粒度和粗粒度。根据实现方法分
- C++ 实现 K-Means 聚类算法在图像分割中的应用
数字魔方操控师
c++聚类算法开发语言K-Means
K-Means聚类算法在图像分割中的C++实现1.K-Means聚类算法原理K-Means是一种经典的无监督学习算法,用于将数据点划分为K个不同的簇。其核心思想是通过迭代优化,使得每个数据点到其所属簇中心的距离平方和最小。算法步骤如下:初始化:随机选择K个数据点作为初始簇中心分配:将每个数据点分配到距离最近的簇中心更新:重新计算每个簇的中心迭代:重复步骤2和3,直到簇中心不再变化或达到最大迭代次数
- 数据挖掘算法在金融行业中的应用与案例解析
数字魔方操控师
数据挖掘算法金融
引言在当今数字化时代,金融行业积累了海量的数据。如何从这些海量数据中提取有价值的信息,成为金融机构提升竞争力、降低风险、优化服务的关键。数据挖掘算法应运而生,通过运用聚类算法、关联规则挖掘等技术,为金融行业的决策提供有力支持。聚类算法在金融行业的应用客户细分聚类算法可以将金融客户按照不同的特征进行分组。例如,通过分析客户的年龄、收入、资产规模、消费习惯等数据,将客户分为不同的群体。对于高净值客户群
- 基于K-means聚类算法的图像分割
挂科边缘
MATLAB项目实战kmeans聚类计算机视觉matlab
文章目录前言一、理论基础1.K-means聚类算法的原理2.K-means聚类算法的要点3.K-means聚类算法的缺点4.基于K-means聚类算法进行图像分割二、程序实现1.样本间的距离2.提取特征向量3.图像聚类分割总结源码下载前言图像分割就是把图像分成各具特性的区域并提取人们感兴趣的目标的技术和过程,是目标检测和模式识别的基础。现有的图像分割方法主要有基于阈值的分割方法、基于区域的分割方法
- 机器学习聚类算法---K-Means算法
安替-AnTi
机器学习机器学习聚类算法KMeans
文章目录引言K-means聚类算法K-means算法的相关描述K-means算法的工作流程K-means聚类算法后处理二分K-means算法可视化界面本章小结参考文献引言先说个K-means算法很高大上的用处,来开始新的算法学习。我们都知道每一届的美国总统大选,那叫一个竞争激烈。可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大。有人会说,这跟K-means算法有什么关系?当然,如果
- C/C++ K-means聚类算法详解及源码
猿来如此yyy
C/C++算法详解及源码kmeansc语言c++算法聚类开发语言
K-means聚类算法是一种用于将数据集划分为K个不相交的簇的迭代算法。该算法的基本思想是根据数据点之间的距离将它们划分为不同的簇,每个簇都有一个中心点,称为质心。算法的目标是最小化所有数据点与所属簇质心的距离之和。具体步骤如下:随机选择K个数据点作为初始质心。计算所有数据点与质心的距离,并将每个数据点分配到最近的质心所属的簇。更新每个簇的质心,计算每个簇数据点的平均值。重复步骤2和步骤3,直到簇
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo