推荐系统基础-常用相似度算法

推荐系统中计算相似度常用的方法

欧几里得算法(欧几里得距离)

欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。
其计算原理依赖于下面的定理:
两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。
最大公约数(greatest common divisor)缩写为gcd。
gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0),以此辗转相除得到最终结果。

#函数内递归
def gcd(a, b):
     if a < b:
         a, b = b, a
     while b != 0:
         a,b = b,a%b
     return a

#函数递归
def gcd(a, b):
     if b == 0:
         return a
     return gcd(b, a % b)

几个数据集之间的相似度一般是基于每对对象间的距离计算

#-*-coding:utf-8 -*-
#计算欧几里德距离:
def euclidean(p,q):
  #如果两数据集数目不同,计算两者之间都对应有的数
  same = 0
  for i in p:
      if i in q:
          same +=1

#计算欧几里德距离,并将其标准化
e = sum([(p[i] - q[i])**2 for i in range(same)])
return 1/(1+e**.5)
我们用数据集可以去算一下:

p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print euclidean(p,q)
得出结果是:0.261203874964

欧几里德算法的缺陷:
在素数比较小的时候一般是感觉不到的,只有在大素数时才会显现出来。
一般实际应用中的整数很少会超过64位(当然现在已经允许128位了),对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。

Stein算法很好的解决了欧几里德算法中的这个缺陷,Stein算法只有整数的移位和加减法,为了说明Stein算法的正确性,首先必须注意到以下结论:
gcd(a,a)=a,也就是一个数和其自身的公约数仍是其自身。
gcd(ka,kb)=k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换。特殊地,当k=2时,说明两个偶数的最大公约数必然能被2整除。
当k与b互为质数,gcd(ka,b)=gcd(a,b),也就是约掉两个数中只有其中一个含有的因子不影响最大公约数。特殊地,当k=2时,说明计算一个偶数和一个奇数的最大公约数时,可以先将偶数除以2。

def gcd_Stein(a, b):  
    if a < b:
        a, b = b, a
    if (0 == b):
        return a
    if a % 2 == 0 and b % 2 == 0:
        return 2 * gcd_Stein(a/2, b/2)
    if a % 2 == 0:
        return gcd_Stein(a / 2, b)
    if b % 2 == 0:
        return gcd_Stein(a, b / 2)
    
    return gcd_Stein((a + b) / 2, (a - b) / 2)

皮尔逊相关度

几个数据集中出现异常值的时候,欧几里德距离就不如皮尔逊相关度‘稳定’,它会在出现偏差时倾向于给出更好的结果。其公式为:

-*-coding:utf-8 -*-
#计算皮尔逊相关度:
def pearson(p,q):
#只计算两者共同有的
    same = 0
    for i in p:
        if i in q:
            same +=1

    n = same
    #分别求p,q的和
    sumx = sum([p[i] for i in range(n)])
    sumy = sum([q[i] for i in range(n)])
    #分别求出p,q的平方和
    sumxsq = sum([p[i]**2 for i in range(n)])
    sumysq = sum([q[i]**2 for i in range(n)])
    #求出p,q的乘积和
    sumxy = sum([p[i]*q[i] for i in range(n)])
    # print sumxy
    #求出pearson相关系数
    up = sumxy - sumx*sumy/n
    down = ((sumxsq - pow(sumxsq,2)/n)*(sumysq - pow(sumysq,2)/n))**.5
    #若down为零则不能计算,return 0
    if down == 0 :return 0
    r = up/down
    return r
用同样的数据集去计算:

p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print pearson(p,q)
得出结果是:0.00595238095238

曼哈顿距离

曼哈顿距离是另一种相似度计算方法,不是经常需要,但是我们仍然学会如何用python去实现,其公式为:

#-*-coding:utf-8 -*-
#计算曼哈顿距离:
def manhattan(p,q):
#只计算两者共同有的
    same = 0
    for i in p:
        if i in q:
        same += 1
#计算曼哈顿距离
    n = same
    vals = range(n)
    distance = sum(abs(p[i] - q[i]) for i in vals)
    return distance
用以上的数据集去计算:

p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print manhattan(p,q)
得出结果为4

Jaccard系数

Jaccard index , 又称为Jaccard相似系数(Jaccard similarity coefficient)用于比较有限样本集之间的相似性与差异性。Jaccard系数值越大,样本相似度越高。

当数据集为二元变量时,我们只有两种状态:0或者1。这个时候以上的计算相似度的方法就无法派上用场,于是我们引出Jaccard系数,这是一个能够表示两个数据集都是二元变量(也可以多元)的相似度的指标,其公式为:

#-*-coding:utf-8 -*-
# 计算jaccard系数
def jaccard(p,q):
    c = [a for i in p if v in b]
    return float(len(c))/(len(a)+len(b)-len(b))
#注意:在使用之前必须对两个数据集进行去重
我们用一些特殊的数据集去测试一下:

p = ['shirt','shoes','pants','socks']
q = ['shirt','shoes']
print jaccard(p,q)
得出结果是:0.5

主要应用场景

  • 比较文本相似度,用于文本查重与去重;
  • 计算对象间距离,用于数据聚类等。

(待补充)

你可能感兴趣的:(推荐系统基础-常用相似度算法)