7.18 - medium总结17

323. Number of Connected Components in an Undirected Graph: 这题算是比较典型的图的问题,有三种解法,bfs,dfs,union-find:

class Solution(object):
    def countComponents(self, n, edges):
        """
        :type n: int
        :type edges: List[List[int]]
        :rtype: int
        """
        m = range(n)
        res = set()
        # union-find的含义就是找到某个节点的最终的root
        # 在这里,因为用index作为map的key
        # 对于每一条边,每加入一个边,就检查两个点,e[0]为root,e[1]为child
        # 看看这两个点的最终father是谁,然后再把这两个最终father联系起来
        for e in edges:
            self.union(m, e[0], e[1])
        # 用一个set记录所有的最终father的数量
        for i in m:
            res.add(self.find(m, i))
        return len(res)

    def find(self, m, node):
        if node == m[node]:
            return node
        return self.find(m, m[node])
    
    def union(self, m, node1, node2):
        father1 = self.find(m, node1)
        father2 = self.find(m, node2)
        if father1 != father2:
            m[father2] = father1

class Solution(object):
    def countComponents(self, n, edges):
        """
        :type n: int
        :type edges: List[List[int]]
        :rtype: int
        """     
        visited = [0] * n
        g = {x:[] for x in xrange(n)} # g[n] 表示n 和哪些值相连接, 其实就是用list和map构造一个图的表示形式。
        for x, y in edges:
            g[x].append(y)
            g[y].append(x)
            
        ret = 0
        for i in xrange(n): # 对于每一个节点,如果没有被访问过,就对其进行dfs
            if visited[i] == 0:
                self.dfs(i, g, visited) # 每遍历一次连接,就在ret上加一
                ret += 1
                
        return ret
    
    def dfs(self, n, g, visited):
        if visited[n]:
            return
        visited[n] = 1
        for x in g[n]:
            self.dfs(x, g, visited)
class Solution(object):
    def countComponents(self, n, edges):
        """
        :type n: int
        :type edges: List[List[int]]
        :rtype: int
        """
        # bfs也类似,也要创造出图的表示方式
        g = {x:[] for x in xrange(n)}
        visited = [0 for _ in range(n)]
        for x, y in edges:
            g[x].append(y)
            g[y].append(x)
            
        ret = 0
        for i in xrange(n):
            if visited[i] == 0:
                # 如果没有被visited过,则创建一个新的queue
                queue = [i]
                ret += 1
                while queue:
                    j = queue.pop(0)
                    visited[j] = 1
                    for k in g[j]:
                        if visited[k] == 0:
                            queue += [k]

        return ret

324. Wiggle Sort II: sort一下再排序就好了,但是如果要O(N)的复杂度,O(1)的space的话,需要用到quick select, 但是接下来怎么做实在是太复杂了,感觉意义不是很大
325. Maximum Size Subarray Sum Equals k: 利用前缀和,虽然自己的解法AC了,但是有比较好的解法,在loop过程中直接计算前缀和,然后利用hash来记录
328. Odd Even Linked List: 用一个even和一个odd来分别记录,然后拼起来就行了
331. Verify Preorder Serialization of a Binary Tree:没做出来,感觉体力被那道wiggle sort耗尽了,这题的思路其实也不难,就是碰到两个#就把它们从stack pop出来,再pop出来它们的parent并且push一个#进去。循环这么做就可以了。体力耗尽就是心浮气躁。先休息一下再做。

class Solution(object):
    def isValidSerialization(self, preorder):
        """
        :type preorder: str
        :rtype: bool
        """
        stack = []
        top = -1
        preorder = preorder.split(',')
        for s in preorder:
            stack.append(s)
            top += 1
            while(self.endsWithTwoHashes(stack,top)):
                h = stack.pop()
                top -= 1
                h = stack.pop()
                top -= 1
                if top < 0:
                    return False
                h = stack.pop()
                stack.append('#')
        if len(stack) == 1:
            if stack[0] == '#':
                return True
        return False

    def endsWithTwoHashes(self,stack,top):
        if top<1:
            return False
        if stack[top]=='#' and stack[top-1]=='#':
            return True
        return False

332. Reconstruct Itinerary: 休息了一下,沉下心来,用backtracking作出一个TLE版本,还可以接受。不过DFS的正确打开方式如解法2,详细解释:https://discuss.leetcode.com/topic/36370/short-ruby-python-java-c, 我觉得我能做出TLE的已经满足了,解法2只能背下来,真正面试时候属于知道就知道,不知道就拉倒的解法。。。

class Solution(object):
    def findItinerary(self, tickets):
        """
        :type tickets: List[List[str]]
        :rtype: List[str]
        """
        m = {}
        for i in range(len(tickets)):
            m[tickets[i][0]] = m.get(tickets[i][0], [])+ [i] # 从这个t[0] 出发,用了第几张票
        
        used = [False for _ in range(len(tickets))]
        self.res = []
        self.dfs(m, ["JFK"], used, tickets)
        return self.res
        
    
    def dfs(self, m, cur, used, tickets):
        if len(cur) == len(tickets)+1:
            if not self.res or self.res > cur:
                self.res = cur[:]
            return
        for c in m.get(cur[-1], []):
            if used[c]:
                continue
            used[c] = True
            cur.append(tickets[c][1])
            self.dfs(m, cur, used, tickets)
            cur.pop()
            used[c] = False
class Solution(object):
    def findItinerary(self, tickets):
        """
        :type tickets: List[List[str]]
        :rtype: List[str]
        """
        # build graph
        graph = {}
        for t in tickets:
            graph[t[0]] = graph.get(t[0], []) + [t[1]]
        
        for k, v in graph.iteritems():
            graph[k] = sorted(v)
        
        departure = "JFK"
        path = []
        self.dfs(graph, departure, path)
        
        return path
    
    def dfs(self, graph, departure, path):
        arrivals = graph.get(departure)
        while arrivals:
            self.dfs(graph, arrivals.pop(0), path)
        path.insert(0, departure)
                

333. Largest BST Subtree: 还算是简单的divide and conquer
334. Increasing Triplet Subsequence:可以记录前两个最小值,或者记录一下两位上升序列中的后一个值。
337. House Robber III:divide and conquer,返回值分成with root和without root两种情况就可以了
338. Counting Bits:一道dp题,推导公式如下: if i < 2**(k+1): dp[i] = dp[i-2**k] + 1 elif i == 2**(k+1): k += 1, dp[i] = 1

你可能感兴趣的:(7.18 - medium总结17)