1.何为二叉搜索树
1.1二叉搜索树的接口设计
1.2添加节点
1.3元素比较方案
1.4相关代码
1.BinarySearchTree类
package com.mj; import java.util.Comparator; import java.util.LinkedList; import java.util.Queue; import com.mj.printer.BinaryTreeInfo; @SuppressWarnings("unchecked") public class BinarySearchTreeimplements BinaryTreeInfo { private int size; private Node root; private Comparator comparator; public BinarySearchTree() { this(null); } public BinarySearchTree(Comparator comparator) { this.comparator = comparator; } public int size() { return size; } public boolean isEmpty() { return size == 0; } public void clear() { root = null; size = 0; } public void add(E element) { elementNotNullCheck(element); // 添加第一个节点 if (root == null) { root = new Node<>(element, null); size++; return; } // 添加的不是第一个节点 // 找到父节点 Node parent = root; Node node = root; int cmp = 0; do { cmp = compare(element, node.element); parent = node; if (cmp > 0) { node = node.right; } else if (cmp < 0) { node = node.left; } else { // 相等 node.element = element; return; } } while (node != null); // 看看插入到父节点的哪个位置 Node newNode = new Node<>(element, parent); if (cmp > 0) { parent.right = newNode; } else { parent.left = newNode; } size++; } public void remove(E element) { remove(node(element)); } public boolean contains(E element) { return node(element) != null; } private void remove(Node node) { if (node == null) return; size--; if (node.hasTwoChildren()) { // 度为2的节点 // 找到后继节点 Node s = successor(node); // 用后继节点的值覆盖度为2的节点的值 node.element = s.element; // 删除后继节点 node = s; } // 删除node节点(node的度必然是1或者0) Node replacement = node.left != null ? node.left : node.right; if (replacement != null) { // node是度为1的节点 // 更改parent replacement.parent = node.parent; // 更改parent的left、right的指向 if (node.parent == null) { // node是度为1的节点并且是根节点 root = replacement; } else if (node == node.parent.left) { node.parent.left = replacement; } else { // node == node.parent.right node.parent.right = replacement; } } else if (node.parent == null) { // node是叶子节点并且是根节点 root = null; } else { // node是叶子节点,但不是根节点 if (node == node.parent.left) { node.parent.left = null; } else { // node == node.parent.right node.parent.right = null; } } } private Node node(E element) { Node node = root; while (node != null) { int cmp = compare(element, node.element); if (cmp == 0) return node; if (cmp > 0) { node = node.right; } else { // cmp < 0 node = node.left; } } return null; } // /** // * 前序遍历 // */ // public void preorderTraversal() { // preorderTraversal(root); // } // // private void preorderTraversal(Node node) { // if (node == null) return; // // System.out.println(node.element); // preorderTraversal(node.left); // preorderTraversal(node.right); // } // // /** // * 中序遍历 // */ // public void inorderTraversal() { // inorderTraversal(root); // } // // private void inorderTraversal(Nodenode) { // if (node == null) return; // // inorderTraversal(node.left); // System.out.println(node.element); // inorderTraversal(node.right); // } // // /** // * 后序遍历 // */ // public void postorderTraversal() { // postorderTraversal(root); // } // // private void postorderTraversal(Nodenode) { // if (node == null) return; // // postorderTraversal(node.left); // postorderTraversal(node.right); // System.out.println(node.element); // } // // /** // * 层序遍历 // */ // public void levelOrderTraversal() { // if (root == null) return; // // Queue> queue = new LinkedList<>(); // queue.offer(root); // // while (!queue.isEmpty()) { // Nodenode = queue.poll(); // System.out.println(node.element); // // if (node.left != null) { // queue.offer(node.left); // } // // if (node.right != null) { // queue.offer(node.right); // } // } // } public void preorder(Visitorvisitor) { if (visitor == null) return; preorder(root, visitor); } private void preorder(Node node, Visitor visitor) { if (node == null || visitor.stop) return; visitor.stop = visitor.visit(node.element); preorder(node.left, visitor); preorder(node.right, visitor); } public void inorder(Visitor visitor) { if (visitor == null) return; inorder(root, visitor); } private void inorder(Node node, Visitor visitor) { if (node == null || visitor.stop) return; inorder(node.left, visitor); if (visitor.stop) return; visitor.stop = visitor.visit(node.element); inorder(node.right, visitor); } public void postorder(Visitor visitor) { if (visitor == null) return; postorder(root, visitor); } private void postorder(Node node, Visitor visitor) { if (node == null || visitor.stop) return; postorder(node.left, visitor); postorder(node.right, visitor); if (visitor.stop) return; visitor.stop = visitor.visit(node.element); } public void levelOrder(Visitor visitor) { if (root == null || visitor == null) return; Queue > queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { Node node = queue.poll(); if (visitor.visit(node.element)) return; if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } } } public boolean isComplete() { if (root == null) return false; Queue > queue = new LinkedList<>(); queue.offer(root); boolean leaf = false; while (!queue.isEmpty()) { Node node = queue.poll(); if (leaf && !node.isLeaf()) return false; if (node.left != null) { queue.offer(node.left); } else if (node.right != null) { // node.left == null && node.right != null return false; } if (node.right != null) { queue.offer(node.right); } else { // node.right == null leaf = true; } } return true; } // public boolean isComplete() { // if (root == null) return false; // // Queue > queue = new LinkedList<>(); // queue.offer(root); // // boolean leaf = false; // while (!queue.isEmpty()) { // Nodenode = queue.poll(); // if (leaf && !node.isLeaf()) return false; // // if (node.left != null && node.right != null) { // queue.offer(node.left); // queue.offer(node.right); // } else if (node.left == null && node.right != null) { // return false; // } else { // 后面遍历的节点都必须是叶子节点 // leaf = true; // if (node.left != null) { // queue.offer(node.left); // } // } // } // // return true; // } public int height() { if (root == null) return 0; // 树的高度 int height = 0; // 存储着每一层的元素数量 int levelSize = 1; Queue> queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { Node node = queue.poll(); levelSize--; if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } if (levelSize == 0) { // 意味着即将要访问下一层 levelSize = queue.size(); height++; } } return height; } public int height2() { return height(root); } private int height(Node node) { if (node == null) return 0; return 1 + Math.max(height(node.left), height(node.right)); } @Override public String toString() { StringBuilder sb = new StringBuilder(); toString(root, sb, ""); return sb.toString(); } private void toString(Node node, StringBuilder sb, String prefix) { if (node == null) return; toString(node.left, sb, prefix + "L---"); sb.append(prefix).append(node.element).append("\n"); toString(node.right, sb, prefix + "R---"); } /** * @return 返回值等于0,代表e1和e2相等;返回值大于0,代表e1大于e2;返回值小于于0,代表e1小于e2 */ private int compare(E e1, E e2) { if (comparator != null) { return comparator.compare(e1, e2); } return ((Comparable )e1).compareTo(e2); } private void elementNotNullCheck(E element) { if (element == null) { throw new IllegalArgumentException("element must not be null"); } } @SuppressWarnings("unused") private Node predecessor(Node node) { if (node == null) return null; // 前驱节点在左子树当中(left.right.right.right....) Node p = node.left; if (p != null) { while (p.right != null) { p = p.right; } return p; } // 从父节点、祖父节点中寻找前驱节点 while (node.parent != null && node == node.parent.left) { node = node.parent; } // node.parent == null // node == node.parent.right return node.parent; } private Node successor(Node node) { if (node == null) return null; // 前驱节点在左子树当中(right.left.left.left....) Node p = node.right; if (p != null) { while (p.left != null) { p = p.left; } return p; } // 从父节点、祖父节点中寻找前驱节点 while (node.parent != null && node == node.parent.right) { node = node.parent; } return node.parent; } public static abstract class Visitor { boolean stop; /** * @return 如果返回true,就代表停止遍历 */ public abstract boolean visit(E element); } private static class Node { E element; Node left; Node right; Node parent; public Node(E element, Node parent) { this.element = element; this.parent = parent; } public boolean isLeaf() { return left == null && right == null; } public boolean hasTwoChildren() { return left != null && right != null; } } @Override public Object root() { return root; } @Override public Object left(Object node) { return ((Node )node).left; } @Override public Object right(Object node) { return ((Node )node).right; } @Override public Object string(Object node) { Node myNode = (Node )node; String parentString = "null"; if (myNode.parent != null) { parentString = myNode.parent.element.toString(); } return myNode.element + "_p(" + parentString + ")"; } }
2.main函数
package com.mj; import java.util.Comparator; import com.mj.BinarySearchTree.Visitor; import com.mj.file.Files; import com.mj.printer.BinaryTreeInfo; import com.mj.printer.BinaryTrees; @SuppressWarnings("unused") public class Main { private static class PersonComparator implements Comparator{ public int compare(Person e1, Person e2) { return e1.getAge() - e2.getAge(); } } private static class PersonComparator2 implements Comparator { public int compare(Person e1, Person e2) { return e2.getAge() - e1.getAge(); } } static void test1() { Integer data[] = new Integer[] { 7, 4, 9, 2, 5, 8, 11, 3, 12, 1 }; BinarySearchTree bst = new BinarySearchTree<>(); for (int i = 0; i < data.length; i++) { bst.add(data[i]); } BinaryTrees.println(bst); } static void test2() { Integer data[] = new Integer[] { 7, 4, 9, 2, 5, 8, 11, 3, 12, 1 }; BinarySearchTree bst1 = new BinarySearchTree<>(); for (int i = 0; i < data.length; i++) { bst1.add(new Person(data[i])); } BinaryTrees.println(bst1); BinarySearchTree bst2 = new BinarySearchTree<>(new Comparator () { public int compare(Person o1, Person o2) { return o2.getAge() - o1.getAge(); } }); for (int i = 0; i < data.length; i++) { bst2.add(new Person(data[i])); } BinaryTrees.println(bst2); } static void test3() { BinarySearchTree bst = new BinarySearchTree<>(); for (int i = 0; i < 40; i++) { bst.add((int)(Math.random() * 100)); } String str = BinaryTrees.printString(bst); str += "\n"; Files.writeToFile("F:/1.txt", str, true); // BinaryTrees.println(bst); } static void test4() { BinaryTrees.println(new BinaryTreeInfo() { @Override public Object string(Object node) { return node.toString() + "_"; } @Override public Object root() { return "A"; } @Override public Object right(Object node) { if (node.equals("A")) return "C"; if (node.equals("C")) return "E"; return null; } @Override public Object left(Object node) { if (node.equals("A")) return "B"; if (node.equals("C")) return "D"; return null; } }); // test3(); /* * Java的匿名类,类似于iOS中的Block、JS中的闭包(function) */ // BinarySearchTree bst1 = new BinarySearchTree<>(new Comparator // @Override // public int compare(Person o1, Person o2) { // return 0; // } // }); // bst1.add(new Person(12)); // bst1.add(new Person(15)); // // BinarySearchTree() { bst2 = new BinarySearchTree<>(new PersonComparator()); // bst2.add(new Person(12)); // bst2.add(new Person(15)); // // BinarySearchTreebst4 = new BinarySearchTree<>(new Car); // // // java.util.ComparatoriComparator; } static void test5() { BinarySearchTreebst = new BinarySearchTree<>(); bst.add(new Person(10, "jack")); bst.add(new Person(12, "rose")); bst.add(new Person(6, "jim")); bst.add(new Person(10, "michael")); BinaryTrees.println(bst); } static void test6() { Integer data[] = new Integer[] { 7, 4, 9, 2, 5 }; BinarySearchTree bst = new BinarySearchTree<>(); for (int i = 0; i < data.length; i++) { bst.add(data[i]); } // BinarySearchTree bst = new BinarySearchTree<>(); // for (int i = 0; i < 10; i++) { // bst.add((int)(Math.random() * 100)); // } BinaryTrees.println(bst); System.out.println(bst.isComplete()); // bst.levelOrderTraversal(); /* * 7 * 4 9 2 5 */ // bst.levelOrder(new Visitor() { // public void visit(Integer element) { // System.out.print("_" + element + "_ "); // } // }); // bst.inorder(new Visitor() { // public void visit(Integer element) { // System.out.print("_" + (element + 3) + "_ "); // } // }); // System.out.println(bst.height()); } static void test7() { Integer data[] = new Integer[] { 7, 4, 9, 2, 5, 8, 11, 3, 12, 1 }; BinarySearchTreebst = new BinarySearchTree<>(); for (int i = 0; i < data.length; i++) { bst.add(data[i]); } BinaryTrees.println(bst); bst.remove(7); BinaryTrees.println(bst); } static void test8() { Integer data[] = new Integer[] { 7, 4, 9, 2, 1 }; BinarySearchTree bst = new BinarySearchTree<>(); for (int i = 0; i < data.length; i++) { bst.add(data[i]); } BinaryTrees.println(bst); System.out.println(bst.isComplete()); } static void test9() { Integer data[] = new Integer[] { 7, 4, 9, 2, 1 }; BinarySearchTree bst = new BinarySearchTree<>(); for (int i = 0; i < data.length; i++) { bst.add(data[i]); } BinaryTrees.println(bst); bst.preorder(new Visitor () { public boolean visit(Integer element) { System.out.print(element + " "); return element == 2 ? true : false; } }); System.out.println(); bst.inorder(new Visitor () { public boolean visit(Integer element) { System.out.print(element + " "); return element == 4 ? true : false; } }); System.out.println(); bst.postorder(new Visitor () { public boolean visit(Integer element) { System.out.print(element + " "); return element == 4 ? true : false; } }); System.out.println(); bst.levelOrder(new Visitor () { public boolean visit(Integer element) { System.out.print(element + " "); return element == 9 ? true : false; } }); System.out.println(); } public static void main(String[] args) { test9(); } }
3.Person类
package com.mj; public class Person implements Comparable{ private int age; private String name; public int getAge() { return age; } public void setAge(int age) { this.age = age; } public Person(int age) { this.age = age; } public Person(int age, String name) { this.age = age; this.name = name; } @Override public int compareTo(Person e) { // if (age > e.age) return 1; // if (age < e.age) return -1; // return 0; return age - e.age; } @Override public String toString() { return age + "_" + name; } }