- 交换机和路由器的区别
毛毛的毛毛
智能路由器网络
交换机(Switch)和路由器(Router)都是网络中常见的设备,它们各自有不同的功能和作用。以下是交换机和路由器之间的主要区别:1.工作层级交换机(Switch):主要工作在数据链路层(OSI模型的第2层),也可以工作在网络层(第3层),这种交换机称为“三层交换机”。交换机通过MAC地址来识别和转发数据帧,它根据设备的硬件地址来决定将数据发送到哪个端口。路由器(Router):主要工作在网络层
- 神经架构搜索在大模型效率优化中的应用
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
神经架构搜索,大模型,效率优化,自动机器学习,深度学习1.背景介绍近年来,深度学习模型取得了令人瞩目的成就,在图像识别、自然语言处理、语音识别等领域展现出强大的能力。然而,随着模型规模的不断扩大,训练和部署这些大模型也带来了巨大的挑战。计算资源消耗巨大:大模型的训练需要大量的计算资源,例如高性能GPU和TPU,这导致训练成本高昂,难以普及。内存占用量大:大模型的参数量庞大,需要大量的内存进行存储和
- Data Mesh:《华为数据之道》中的数据治理和**Data Mesh**架构的理念差异
PersistDZ
数据架构华为架构datamesh数据之道
《华为数据之道》中的数据治理和DataMesh架构的理念有一定的差异,尽管两者都强调如何有效管理和利用数据,但它们的侧重点、方法论和适用场景有所不同。以下是它们的异同、优劣势及适用场景的详细比较:1.数据治理与DataMesh的定义数据治理(《华为数据之道》中的数据治理)数据治理是一个全面的过程,旨在通过规范化、标准化、系统化的数据管理,使数据成为企业的核心资产。书中提出了数据治理的五化模型(标准
- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- NL2SQL技术方案系列(6):金融领域知识检索,NL2SQL技术方案以及行业案例实战讲解4
汀、人工智能
LLM工业级落地实践人工智能NL2SQLLLM自然语言处理copilot知识检索语义搜索
NL2SQL技术方案系列(6):金融领域NL2SQL技术方案以及行业案例实战讲解4NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL进阶系列(1):DB-GPT-Hub、SQLco
- Maven 构建配置文件
用心去追梦
mavenpycharmjava
Maven的构建配置主要通过一系列的XML文件来实现,最核心的是pom.xml(ProjectObjectModel,项目对象模型)。以下是pom.xml中几个关键的配置部分及其说明:ProjectInformation(项目信息)::定义项目所属的组织唯一标识符,通常是域名的反向表示。:定义实际项目名称,与groupId一起构成项目的唯一坐标。:项目的版本号。:指定项目的打包类型,如jar,wa
- 频域增强通道注意力机制EFCAM模型详解及代码复现
呆头鹅AI工作室
深度学习算法详解及代码复现深度学习人工智能神经网络condapython
背景与动机在深度学习领域,如何有效处理时间序列数据一直是一个重要的研究方向。近年来,频域分析技术在时间序列处理中展现出了巨大潜力,特别是离散余弦变换(DCT)因其能够高效捕捉低频信息并避免高频噪声干扰而受到广泛关注。FECAM模型的开发正是基于这一背景,旨在结合频域分析和通道注意力机制,以提高模型对时间序列数据的特征提取和表示能力。通过这种创新方法,FECAM模型能够更有效地捕捉时间序列中的关键特
- RabbitMQ,RocketMQ,Kafka 事务性,消息丢失,消息顺序性和消息重复发送的处理策略
90后小伙追梦之路
面试java架构kafkarabbitmq分布式redis数据库
消息队列常见问题处理分布式事务什么是分布式事务我们的服务器从单机发展到拥有多台机器的分布式系统,各个系统之前需要借助于网络进行通信,原有单机中相对可靠的方法调用以及进程间通信方式已经没有办法使用,同时网络环境也是不稳定的,造成了我们多个机器之间的数据同步问题,这就是典型的分布式事务问题。在分布式事务中事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。分
- 关于固定随机种子,模型每次结果也不一样的问题可能解决方法
小白每天学一点
pytorch深度学习人工智能python
问题描述最近一直被“固定随机种子,模型每次结果也不一样”这个问题困扰,我的模型同样的代码每次跑的结果都不一样,而且还忽高忽低,有可能有模型本身架构不合适的问题(按理来说,即便有变动也不会差别太大),忽略掉每次结果差距较大这个问题,先来解决每次结果都不一样这个问题。原因分析:可以按照以下原因顺序检查模型:1.没有设置随机种子。2.虽然设置了随机种子,但随机初始化参数也会有变动。3.若第2中情况已检查
- 阿里云通义开源首个推理步骤评估标准,探索AI推理模型新路径
量子位
1月16日,阿里云通义开源全新的数学推理过程奖励模型Qwen2.5-Math-PRM,72B及7B尺寸模型性能均大幅超越同类开源过程奖励模型;在识别推理错误步骤能力上,Qwen2.5-Math-PRM以7B的小尺寸就超越了GPT-4o。同时,通义团队还开源首个步骤级的评估标准ProcessBench,填补了大模型推理过程错误评估的空白。在当前大模型推理过程中,不时存在逻辑错误或编造看似合理的推理步
- MiniMax开源,突破传统Transformer架构,震撼业界
人工智能模型
就在昨天,AI领域迎来了一项重大突破——MiniMax发布并开源了新一代01系列模型。国产大模型市场再掀巨浪,传统Transformer架构或许将不再是唯一选择。MiniMax-Text-01模型:https://huggingface.co/MiniMaxAI/MiniMax-Text-01MiniMax-VL-01模型:https://huggingface.co/MiniMaxAI/Mini
- mindspeed-llm源码解析(一)preprocess_data
人工智能
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。文章中贴的源码加了相关注释,同学们可以把源码和注释结合起来看。首先来看一下main函数defmain():#获取入参,通过后面的代码可以知道有哪些关键参数args=get_args()#参
- 从RNN到Transformer:生成式AI技术演变与未来展望
非著名架构师
人工智能rnntransformer
生成式人工智能(GenerativeAI)近年来取得了令人瞩目的进展,其背后的核心技术是自回归模型的不断演进。从传统的递归神经网络(RNN)到革命性的Transformer架构,本文将全面剖析这一技术发展历程。一、RNN:生成式模型的起点1.RNN的基本原理递归神经网络(RecurrentNeuralNetwork,RNN)是一种专为处理序列数据设计的神经网络架构。其核心思想是通过循环连接的隐藏状
- 开源多模态推理模型QVQ:视觉推理能力的突破与未来展望
前端
近年来,AI代码生成器等人工智能技术飞速发展,多模态推理模型作为其中一个重要分支,正展现出越来越强大的能力。它能够理解和处理多种类型的数据,例如图像、文本、音频等,并进行复杂的推理和决策。阿里云通义千问团队近日发布的QVQ-72B-Preview模型,就是一个极具代表性的例子。该模型开源且在视觉推理方面表现突出,为多模态模型的发展树立了新的里程碑。QVQ模型的核心能力与突破QVQ-72B-Prev
- PyTorch建模与应用:从深度学习到大模型
屿小夏
书籍推荐深度学习pytorch人工智能
文章目录一、内容简介二、值得一读1.从基础到深入,适合不同层次的读者2.丰富的实战案例3.全面的数据处理与模型构建三、适用人群1.AI技术初学者2.在校学生和从业者3.培训机构和高校教学四、总结一、内容简介《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。全书共11章,内容涵盖了从深度学习的基础概念到大语言模型的应用。第1章介绍了深度
- 会捡垃圾、能干家务,元萝卜“视觉+机械臂”技术扫地机器人首秀
量子位
在2025开年科技盛宴CES(国际消费电子展)上,AI机器人无疑成为全场焦点,而其中来自中国科技企业展示和发布的仿生多关节机械手技术在扫地机器人产品上的应用,更获得了全球媒体的高度关注。通过将视觉感知与机械臂技术相结合,能够自主完成拾取垃圾入桶等任务,不仅展示了家用机器人发展的未来形态,也让大众看到了具身智能机器人融入家庭生活的广阔前景。随着大模型技术和具身智能浪潮汹涌而至,家用机器人正迎来全新发
- 论文翻译:A survey on large language model (LLM) security and privacy: The Good, The Bad, and The Ugly
CSPhD-winston-杨帆
论文翻译LLMs-鲁棒性语言模型人工智能自然语言处理
Asurveyonlargelanguagemodel(LLM)securityandprivacy:TheGood,TheBad,andTheUglyhttps://www.sciencedirect.com/science/article/pii/S266729522400014X文章目录关于大型语言模型(LLM)安全性和隐私的调查:好的、坏的和丑陋的摘要1.引言2.背景2.1大型语言模型(L
- 圈子交友app小程序公众号/圈子社群创建必须要注意的几个点
技术选型与平台搭建技术选型:根据需求选择合适的开发技术和框架。例如,对于跨平台应用,可以考虑使用vue、uniapp等前端框架;后端则可以选择php等组合,以保证数据处理的效率和安全性。平台搭建:搭建稳定、易用、美观的App、小程序或公众号平台。注重用户体验,确保界面简洁、操作流畅。用户体验优化界面设计:注重UI/UX设计,确保界面美观、简洁、易用。这有助于提升用户的满意度和忠诚度。交互流程:优化
- 手把手教你学simulink(79.1)--智能家居窗帘与窗户控制场景实例:基于Simulink设计和仿真一个智能窗帘与窗户控制系统,以实现对室内环境的有效管理
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinkmatlabsimulink
目录智能窗帘与窗户控制系统场景下的天气适应性操作建模项目实例项目背景介绍系统架构1.传感器模块(Sensors)2.控制器模块(Controller)3.执行器模块(Actuator)4.通信模块(Communication)仿真实现步骤1.创建新的Simulink模型2.添加传感器模块光照传感器温度传感器天气传感器在Simulink中实现传感器模块3.添加控制器模块天气分析算法决策算法在Simu
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- 【vLLM 学习】安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM是一个Python库,包含预编译的C++和CUDA(12.1)二进制文件。依赖环境操作系统:LinuxPython:3.8-3.12GPU:计算能力7.0或更高(例如V100、T4、RTX20xx、A100、L
- Apache Maven介绍|Maven安装
dami_king
随笔apachemavenjava
ApacheMaven是一款流行的Java项目管理和构建工具,用于自动化构建过程,包括编译、测试、打包、依赖管理和发布等工作。以下是Maven安装步骤解析:在Windows系统中安装Maven下载Maven:访问Maven官方网站(https://maven.apache.org/download.cgi)下载最新的稳定版。通常下载的是.zip格式的归档文件。解压文件:将下载的.zip文件解压到一
- 遗传算法与深度学习实战(26)——编码卷积神经网络架构
盼小辉丶
遗传算法与深度学习实战深度学习cnn遗传算法
遗传算法与深度学习实战(26)——编码卷积神经网络架构0.前言1.EvoCNN原理1.1工作原理1.2基因编码2.编码卷积神经网络架构小结系列链接0.前言我们已经学习了如何构建卷积神经网络(ConvolutionalNeuralNetwork,CNN),在本节中,我们将了解如何将CNN模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。1.EvoCNN原理进化卷积神
- redis和mongodb比较
Redis与MongoDB的对比分析Redis和MongoDB是两种常见的数据库系统,它们分别代表了两种不同类型的数据库:Redis是内存型数据库,而MongoDB是文档型数据库。两者虽然在某些场景下可能有交集,但由于其设计哲学和应用目标的不同,适用的场景也有很大差异。1.数据模型Redis:Redis是一种键值对(key-value)存储系统,支持丰富的数据类型,如字符串(String)、列表(
- MongoDB 学习指南与资料分享
来恩1003
MongoDBmongodb数据库
MongoDB学习资料MongoDB学习资料MongoDB学习资料在数据爆炸的当下,MongoDB作为非关系型数据库的佼佼者,以其独特优势在各领域发光发热。无论是海量数据的存储,还是复杂数据结构的处理,MongoDB都能轻松应对。接下来,让我们一同深入探索MongoDB的学习路径,并分享一些实用的学习资料。学习指南入门基础核心概念掌握MongoDB基于分布式文件存储,采用文档型数据模型。它将数据以
- 服务器数据恢复—硬盘离线数量超过热备盘数量导致RAIDZ崩溃的数据恢复案例
数据恢复
服务器存储数据恢复环境:ZFSStorage7320存储阵列中有32块硬盘。32块硬盘分为4组,每组8块硬盘,共组建了3组RAIDZ,每组raid都配置了热备盘。服务器存储故障:服务器存储运行过程中突然崩溃,排除人为误操作、断电、进水和其他机房不稳定因素。管理员重启服务器存储,系统无法进入,需要恢复服务器存储中的数据。服务器存储数据恢复过程:1、将故障服务器存储中所有硬盘标记后取出,以只读方式进行
- Apache SeaTunnel如何实现MongoDB到Doris无缝数据同步?
数据库
如果你需要使用ApacheSeaTunnel将MongoDB数据库的数据同步到Doris,你可以按照以下步骤进行操作。这些步骤基于ApacheSeaTunnel的官方文档和社区提供的最佳实践:一、环境准备下载并安装SeaTunnel:访问SeaTunnel的官方GitHub页面,下载最新稳定版本的SeaTunnel。解压下载的文件,并配置必要的环境变量(如JAVA_HOME)。配置MongoDB和
- AI Coding,亦或 AI for Coding?
编程语言
Go+编程语言创始人、七牛云创始人兼CEO许式伟,中国科学院软件研究所PLCT实验室负责人、建立中国RISC-V生态的甲辰计划主理人吴伟,专注RISC-V编译器和硬件笔记本开发的鉴释科技联合创始人兼CEO梁宇宁聚首2024IDEA大会,从软件与硬件的双重视角,剖析大模型时代,编程语言的软硬件发展机会。IDEA研究院基础软件中心负责人张宏波主持这场讨论。基础软件行业的变革之所以显著,是因为它紧随人机
- Jenkins持续集成入门到精通
西湖河畔砍柴人
java架构jenkins持续集成系统java
这里写目录标题持续集成及Jenkins介绍软件开发的生命周期软件开发的瀑布模型软件开发的敏捷开发模型什么是敏捷开发什么是持续集成持续集成的组成要素Jenkins介绍持续集成及Jenkins介绍软件开发的生命周期软件开发生命周期简称SDLC(SoftwareDevelopmentLifeCycle),它是集合了计划、开发、测试和部署的集合。需求分析-》项目架构设计-》编码-》测试-》部署维护软件开发
- 5分钟内理解 .prototype 链 | 2024
CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读在JavaScript的世界里,原型(prototype)系统是一个常被讨论但不易掌握的概念。作为JavaScript继承模型的基石,理解原型对于构建大型应用或进行对象操作至关重要。让我们一起探索这个迷人的话题,揭开原型系统的神秘面纱。什么是原型?在JavaScript中,每个对象都有一个内部属性[[Prototype]]。这个属性
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri