Java 深入分析 - 容器 List 与 Queue

小概

Java 深入分析 - 容器 List 与 Queue_第1张图片

本文将着重介绍 ListQueue 中几种常用容器的实现原理,相关 UML 图如上

Collection 作为容器最顶层接口,规范了容器应该具备 增删查、容器 转数组 等能力
- add、remove
- iterate
- contains
- empty
- toArray
- clear

List 继承自 Collection,主要具备对容器元素的 索引排序截取 功能
- get(index), add(index, item),set(index, item)...
- sort
- subList

Queue 作为队列,具备 出队入队 的能力
- offer
- poll
- peek

Deque 扩展 Queue,作为双端队列,能够 双向出队与入队,由于这一特性,同时又兼具 的能力,而且容器框架虽然实现了 Stack 类,但官方并不推荐使用,Deque 完全可以取而代之
- offerFirst
- offerLast
- peekFirst
- peekLast
- pollFirst
- pollLast
- pop
- push

泛型

Java 支持泛型,但这只是一块很甜的语法糖,在 JVM 中泛型的实现却是假的,我们在这里假设泛型类型为 E,虚拟机只是在编译检查的时候,去检查类型对不对,但编译结束后,会把所有关于 E 类型的元素用 Object 代替,也就是说,内存中不会保留任何关于 E 的信息,这也就是 泛型擦除,如下面两种实现其实是完全一样的

abstract class DemoCollection {

    E[] items;

    abstract void add(E item);

}
abstract class DemoCollection {

    Object[] items;

    abstract void add(Object item);

}

但这两种写法在设计上却有很大区别,我们应该用泛型来定义一种规范,然后大家都按照规范来编程,解除对象类型之间的耦合,容器框架更是如此

List Sort

List 接口中,定义了 sort 默认实现

    default void sort(Comparator c) {
        Object[] a = this.toArray();
        Arrays.sort(a, (Comparator) c);
        ListIterator i = this.listIterator();
        for (Object e : a) {
            i.next();
            i.set((E) e);
        }
    }

先拿到一份 List数组快照,然后将该快照进行排序,最后将有序快照依次赋值给 List

  1. 如何 toArray 将交给子类来实现,这里只需要知道我具有这个功能,至于如何实现并不重要
  2. Arrays 作为数组的一个工具类,其中的 sort 方法我们将在其他文章中讨论,它采用的是 快速排序 [1] 和优化的 归并排序 [2]

ArrayList

ArrayList,使用频率最高的 List,是一种自扩容数组,内部维护了一个 数组,容器所有的操作将针对这个数组进行相应改动

public class ArrayList extends AbstractList
        implements List, RandomAccess, Cloneable, java.io.Serializable
{
    /**
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer. Any
     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
     * will be expanded to DEFAULT_CAPACITY when the first element is added.
     */
    transient Object[] elementData; // non-private to simplify nested class access
    // ...
}

我们使用数组的时候,数组的大小限定往往最令人头疼,然而 Jdk 给出的 ArrayList 便能让我们方便的对数组进行业务操作,同时又不用考虑数组大小的限定

现在我们作出如下假设

  • 内部数组为 array
  • 数组大小为 arrayCapacity
  • 元素大小为 itemCapacity
  • 扩容因子为 growFactor
  • 数组最大大小 maxCapacity
  • 数组最小大小 minCapacity

则每次扩容后新的数组大小为

那么我们按一下方式对数组进行扩容

    if (itemCapacity > arrayCapacity) {
        newCapacity = getNewCapacity();
        array = growArray(array, newCapacity);
    }

ArrayListgrowFactor = 0.5minCapacity = 10 maxCapacity = 0x7fffffff - 8,也就是说,初始容量为 10,每次扩容 1.5 倍,最大容量 0x7fffffff - 8

    /**
     * Default initial capacity.
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * Shared empty array instance used for default sized empty instances. We
     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
     * first element is added.
     */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     * Increases the capacity to ensure that it can hold at least the
     * number of elements specified by the minimum capacity argument.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // ...
    }

SubList

ArrayList 中维护了一个私有类 SubList

    private class SubList extends AbstractList implements RandomAccess {

        private final AbstractList parent;

        private final int parentOffset;

        private final int offset;
        // ...
    }

SubList 也作为一种 List,它能够截取自身 ArrayList 的一段数组,在这里,它生成的不是快照,而只是复制的一份 引用

也就是说,你对截取的 SubList 做的任何操作将会直接反映到 ArrayList 堆内存中,这是一个应该值得注意的地方

LinkedList

LinkedList 作为一种 双端链表,采用 链表 链接的方式实现容器,内部维护了一个私有类 Node,也就是说,如果要让 LinkedList 支持索引功能,那将会花费更大的开销

public class LinkedList
    extends AbstractSequentialList
    implements List, Deque, Cloneable, java.io.Serializable
{
    /**
     * Pointer to first node.
     * Invariant: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     */
    transient Node first;

    /**
     * Pointer to last node.
     * Invariant: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     */
    transient Node last;
    
    private static class Node {
        E item;
        Node next;
        Node prev;
        // ...
    }
}

多角色

LinkedList 如果只是当一个 List 用的话,恐怕是太浪费了,如果我们仔细观察下文章开始给的 List 框架设计图,会发现 LinkedList 拥有很多数据结构的功能

LinkedList 作为 索引列表 的同时,既能作为 先进先出队列,又能作为 双端队列,还具备 的能力

也就是说,LinkedList 能够转换成多种角色,这将都归功于面向接口编程的思想

Vector

Vector 是一种 线程安全的自扩容性的数组,内部实现和
ArrayList 差不多一模一样,一个细节的差别在于,Vector 每次扩容是当前容量的 2 倍,而 ArrayList 是 1.5 倍,扩容是一项损耗效率的操作,在并发条件下由为明显,这可能就是两者扩容因子不同设计的初衷

并发

Vector 被设计为线程安全的容器,内部采用最传统的方式,对大部分访问的方法都加全局锁

也就是说,高并发竞争条件下,大家在访问上锁的方法时,都需要排队获取

Vector 在高并发的条件下,效率是非常低下的,因此及其 不推荐使用 该类,如果需要线程共享时,我们甚至可以采取其他措施来实现,或者考虑 CopyOnWriteArrayList

ArrayDeque

ArrayDeque 使用 数组实现双端队列,内部维护两个索引 headtail,分别指向队头和队尾,当对队列进行对结构有变动的操作时,会立即 同步 到这两个索引

public class ArrayDeque extends AbstractCollection
                           implements Deque, Cloneable, Serializable
{
    /**
     * The array in which the elements of the deque are stored.
     * The capacity of the deque is the length of this array, which is
     * always a power of two. The array is never allowed to become
     * full, except transiently within an addX method where it is
     * resized (see doubleCapacity) immediately upon becoming full,
     * thus avoiding head and tail wrapping around to equal each
     * other.  We also guarantee that all array cells not holding
     * deque elements are always null.
     */
    transient Object[] elements; // non-private to simplify nested class access

    /**
     * The index of the element at the head of the deque (which is the
     * element that would be removed by remove() or pop()); or an
     * arbitrary number equal to tail if the deque is empty.
     */
    transient int head;

    /**
     * The index at which the next element would be added to the tail
     * of the deque (via addLast(E), add(E), or push(E)).
     */
    transient int tail;
}

一开始 head 是在 tail 左边的,即入队时是 tail++,随着我们对容器的操作,headtail 会随着同步一直增长,当索引超出数组范围时,将直接置零,出栈和入栈的操作大致相同,就不细谈了

下面代码中是 poll 的例子,在 ArrayDeque 里,数组容量为 2 的指数倍,elements.length - 1 正好构成 低位掩码

    head = (h + 1) & (elements.length - 1);

在入队时,在队列不为空的情况下,发现 headtail 相等,就代表数组已满,此时需对数组进行扩容,ArrayDeque 默认容量为 8,每次扩容 2

    if ( (tail = (tail + 1) & (elements.length - 1)) == head)
        doubleCapacity();

现在看来,如果我们不需要索引元素,只需要队列功能的话,基于数组的 ArrayDeque 应该是最好的选择,因为占用内存往往要少于基于链表的 LinkedList

PriorityQueue

PriorityQueue 作为一种 优先队列,内部依靠维护一个 堆化数组,来保持出队的优先级,优先级由 Comparator 决定,若未指定比较器,默认采用队列元素 Conparable 升序排列

public class PriorityQueue extends AbstractQueue
    implements java.io.Serializable {
    /**
     * Priority queue represented as a balanced binary heap: the two
     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
     * priority queue is ordered by comparator, or by the elements'
     * natural ordering, if comparator is null: For each node n in the
     * heap and each descendant d of n, n <= d.  The element with the
     * lowest value is in queue[0], assuming the queue is nonempty.
     */
    transient Object[] queue; // non-private to simplify nested class access

    /**
     * The comparator, or null if priority queue uses elements'
     * natural ordering.
     */
    private final Comparator comparator;
    // ...
}

内部数组扩容时,在数组较小时,扩容 2 倍,数组较大时,扩容 1.5 倍,阈值取值为 64,之所以采取如此策略,可能是因为减少容量大时扩容对堆维护损带来的性能损耗

    /**
     * Increases the capacity of the array.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        int oldCapacity = queue.length;
        // Double size if small; else grow by 50%
        // ...
    }

出入队时,将当前元素与相关上下层进行元素交换来维护堆的性质,构建最大堆或最小堆,可以说和排序算法 - 堆排 [3] 完全一样

    /**
     * Establishes the heap invariant (described above) in the entire tree,
     * assuming nothing about the order of the elements prior to the call.
     */
    private void heapify() {...}

    /**
     * Inserts item x at position k, maintaining heap invariant by
     * promoting x up the tree until it is greater than or equal to
     * its parent, or is the root.
     *
     * To simplify and speed up coercions and comparisons. the
     * Comparable and Comparator versions are separated into different
     * methods that are otherwise identical. (Similarly for siftDown.)
     *
     * @param k the position to fill
     * @param x the item to insert
     */
    private void siftUp(int k, E x) {...}

    /**
     * Inserts item x at position k, maintaining heap invariant by
     * demoting x down the tree repeatedly until it is less than or
     * equal to its children or is a leaf.
     *
     * @param k the position to fill
     * @param x the item to insert
     */
    private void siftDown(int k, E x) {...}

参考

1. Jdk 源码 1.8
2. Jdk 官方文档


  1. 详解快速排序及其优化 ↩

  2. 归并排序及其优化 ↩

  3. 堆排序详解 ↩

你可能感兴趣的:(Java 深入分析 - 容器 List 与 Queue)