- 10.5 实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力机器学习深度学习人工智能语言模型
实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍在当今人工智能蓬勃发展的时代,大语言模型(LLMs)如ChatGLM3的出现,为自然语言处理领域带来了革命性的变化。企业和开发者们纷纷寻求利用这些强大的模型来构建定制化的应用,以满足特定业务需求。其中,使用私有数据对ChatGLM3进行微调,成为了实现差异化竞争和提供个性化服务的关键途径。然而,在微调过程中,确保批量生成数据的稳定性
- 语言大模型综述
Paper:ASurveyofLargelanguageModels目录Paper:ASurveyofLargelanguageModels综述概要LLM关键技术规模定律(ScalingLaws)预训练与微调对齐调优(AlignmentTuning)外部工具集成GPT系列模型的技术演进模型检查点和APIPre-Training数据准备和处理数据准备数据预处理数据调度架构EmergentArchit
- 【机器学习笔记 Ⅱ】9 模型评估
巴伦是只猫
机器学习机器学习笔记人工智能
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
- 【机器学习笔记 Ⅱ】7 多类分类
巴伦是只猫
机器学习机器学习笔记分类
1.多类分类(Multi-classClassification)定义多类分类是指目标变量(标签)有超过两个类别的分类任务。例如:手写数字识别:10个类别(0~9)。图像分类:区分猫、狗、鸟等。新闻主题分类:政治、经济、体育等。特点互斥性:每个样本仅属于一个类别(区别于多标签分类)。输出要求:模型需输出每个类别的概率分布,且概率之和为1。实现方式One-vs-Rest(OvR):训练K个二分类器(
- 【论文复现】利用生成式AI进行选股和分配权重
代码能跑就行管它可读性
人工智能chatgpt
2023年8月,OleksandrRomanko等发表题为《ChatGPT-basedInvestmentPortfolioSelection》(基于ChatGPT进行投资组合选择)的论文。论文探讨了生成式AI模型(如ChatGPT)在投资组合选择中的应用潜力。由于生成式AI模型可能产生幻觉,因此需要谨慎验证和验证其输出。本文采用另一种方法,利用ChatGPT从S&P500市场指数中获取潜在有吸引
- NXP imx8mp android11.0 1920x1080 lvds调试
luuu99
arm开发androidlinux
lvds基本调试流程:nxp屏显参数是在c文件进行配置+++b/vendor/nxp-opensource/kernel_imx/arch/arm64/boot/dts/freescale/imx8mp-evk.dts@@-84,6+84,39@@compatible="android,trusty-log-v1";};};+lvds0_panel_pwr:regulator-lvds-pwr{+
- Angular 从框架搭建到开发上线的完整流程
啃火龙果的兔子
开发DEMOangular.js前端javascript
Angular从框架搭建到开发上线的完整流程一、环境准备与项目搭建1.环境要求Node.js(推荐LTS版本,当前16.x/18.x)npm(随Node.js安装)或yarnAngularCLI(最新稳定版)2.安装AngularCLInpminstall-g@angular/cli#或yarnglobaladd@angular/cli3.创建新项目ngnewmy-angular-app--sty
- 【附源码】基于flask框架求职招聘网站 (python+mysql+论文)
本系统(程序+源码)带文档lw万字以上文末可获取本课题的源码和程序系统程序文件列表系统的选题背景和意义选题背景:随着互联网技术的飞速发展,网络求职招聘已经成为了现代人才市场的一大趋势。传统的求职招聘方式逐渐被线上平台所取代,这主要得益于网络平台的便捷性、实时性和广泛性。然而,现有的求职招聘网站虽然数量众多,但质量参差不齐,用户体验也各不相同。一些求职者和招聘者在面对海量信息时,往往会感到无所适从,
- DRM 显示控制与硬件参数配置链路总结(以 i.MX8MP 为例)
DRM显示控制与硬件参数配置链路总结(以i.MX8MP为例)支持作者新书,深入学习嵌入式开发知识:京东购买链接一、核心理解显示参数(如分辨率、时序、色深)最终来源于用户空间,由DRM驱动完成传递与配置,并由LCD控制器驱动实际硬件输出。设备树中通常不写死这些参数。二、显示硬件参数:定义与归属参数项通常设置位置说明分辨率用户空间(如Weston)通过DRMAPI设置,例如1920x1080@60Hz
- 一个小时快速部署大模型,附大模型书:ChatGLM3大模型本地化部署、应用开发与微调!
LLM教程
人工智能langchain知识图谱Agent大模型LLMAI
这个教程有以下几部分构成:硬件配置概念介绍实操测试结果1.硬件配置本文使用的方法配置要求低,没有gpu也可以正常使用(就是有点慢),不管是windows还是linux,都可以无障碍使用大模型,有脚就行,废话少说,let’srock!2.概念介绍几个部署要用到的概念,工具和项目huggingface:类似于模型的github,各种各样的开源模型都可以在这被找到.模型量化技术:这也是我们能够在低端设备
- 牛客_计算器(二)
d3y1
java开发语言
计算器(二)https://www.nowcoder.com/practice/a9c170bfaf7349e3acb475d786ab1c7dimportjava.util.*;/***NC241计算器(二)*@authord3y1*/publicclassSolution{/***代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可***@paramsstring字符串*@
- 10.6 ChatGLM3私有数据微调实战:24小时打造高精度模型,显存直降60%
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt机器学习深度学习人工智能语言模型
ChatGLM3私有数据微调实战:24小时打造高精度模型,显存直降60%1.实战构造私有的微调数据集在微调大模型时,数据质量直接决定模型效果。本节将手把手教你如何构建高质量的私有微调数据集。1.1使用ChatGPT自动设计生成训练数据的Prompt核心思路:通过ChatGPT生成符合任务需求的样本数据,降低人工标注成本。步骤示例(以生成客服对话数据为例):fromlangchain.prompts
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- 【云原生技术】EArorNee uoine .basanend via che sut o inoeturos y>e,xxx.aebord.yonding.xxxx:8443/v2/ failed
阿寻寻
云原生
EArorNeeuoine.basanendviachesutoinoeturosy>e,xxxx.harbor.yonding,xxxx:8443/v2/failedwithstatus:401unauthorized我已经配置了daemon.json文件,也重启了docker,在登陆的时候报错这个是为什么?x509的报错早已解决;现在出现的是HTTP401Unauthorized,含义完全不同
- 企业级图表方案AG Charts v12正式发布:全新功能提升图表交互体验与开发效率
AGGrid成立于英国,致力于提供优秀的企业级数据表格及图表解决方案。AGGrid及AGCharts是其两大主要的高性能企业级JavaScript数据表格及图表解决方案,被全球开发者广泛采用。广泛应用于金融、电信、制造等行业,支持Angular、React、Vue和纯JavaScript项目,拥有企业级的性能与功能深度,凭借其卓越的性能、丰富的功能与高度可定制性,成为构建复杂数据驱动型应用的优选工
- 一名工作8年Java开发的技术博主求职经历
MoneyHacksPro
java
本次会议主要分享了2025年3月至4月中旬的求职经历,求职者通过投递简历、调整期望薪资、优化简历等方式寻找工作,但初期未获得面试机会。求职者通过创建“包皮公司”进行模拟面试,了解市场行情并调整自身定位,最终在4月中旬获得两家公司的面试机会并成功入职。求职者总结了简历优化、面试技巧、市场行情分析等经验,强调在求职过程中需根据实际情况灵活调整策略,并注重差异化竞争。——————————————————
- 2025最新盘点:9款高效韦恩图工具推荐
Designseek满血版
人工智能图论
在数据分析、逻辑推理以及众多学术研究领域,韦恩图都扮演着极为关键的角色。它以直观的圆形或椭圆形重叠区域,清晰地展现出不同集合之间的关系,无论是集合间的交集、并集还是补集,都能一目了然地呈现出来。无论是学生在学习数学、逻辑学课程时梳理知识点,还是专业人士在进行市场调研、项目规划时分析数据,亦或是科研人员在撰写论文、展示研究成果时阐述理论框架,一款好用的韦恩图绘制工具都显得至关重要。今天,就让我为大家
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
weixin_66009678
pytorch人工智能python
出现如下报错:NVIDIAGeForceRTX3090withCUDAcapabilitysm_86isnotcompatiblewiththecurrentPyTorchinstallation.ThecurrentPyTorchinstallsupportsCUDAcapabilitiessm_37sm_50sm_60sm_70.IfyouwanttousetheNVIDIAGeForceRT
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- 如何解决Ubuntu服务器拉取github代码失败
徐方芳
github
使用gitclone拉取GitHub代码时出现以下错误:fatal:unabletoaccess'https://github.com/XXX':Failedtoconnecttogithub.comport443after133795ms:Connectiontimedout通过查找资料,找到解决办法,可以通过运行以下代码解决:gitconfig--global--unsethttp.proxy
- 巨兽的阴影:大型语言模型的挑战与伦理深渊
田园Coder
人工智能科普人工智能科普
当GPT-4这样的庞然大物能够流畅对话、撰写诗歌、编写代码、解析图像,甚至在某些测试中媲美人类专家时,大型语言模型(LLM)仿佛成为了无所不能的“智能神谕”。然而,在这令人目眩的成就之下,潜藏着复杂而严峻的挑战与伦理困境,如同光芒万丈的科技巨兽脚下那片难以忽视的深邃阴影。这些挑战并非技术进步的偶然副作用,而是深植于LLM的运作本质、训练数据来源以及其与社会交互的复杂性之中。它们警示我们,在追逐能力
- fac-via-ppg 项目使用教程
fac-via-ppg项目使用教程fac-via-ppgForeignAccentConversionbySynthesizingSpeechfromPhoneticPosteriorgrams(Interspeech'19)项目地址:https://gitcode.com/gh_mirrors/fa/fac-via-ppg1.项目目录结构及介绍fac-via-ppg/├──data/│└──fi
- 为什么让AI洗碗比写诗难百倍?清华教授揭秘具身智能鸿沟
Loving_enjoy
计算机学科论文创新点机器学习人工智能facebook课程设计
>**人类小脑数亿年进化出的运动智慧,成了AI最难破解的密码**2025年3月,一位网友困惑地发问:“我想让人工智能替我洗碗做饭洗衣服,没想到现在的AI反而在画画、写歌、搞创作……”对此,全国政协委员、中国科学院自动化研究所研究员赵晓光一针见血地指出:**“大模型没有创新能力,想让AI干体力活还要靠具身智能的发展。”**这个看似矛盾的现象背后,隐藏着人工智能发展进程中一个惊人的认知盲区。清华大学心
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 【2025/07/04】GitHub 今日热门项目
GitHub今日热门项目每日精选优质开源项目|发现优质开源项目,跟上技术发展趋势报告概览统计项数值说明报告日期2025-07-04(周五)GitHubTrending每日快照数据时间12:00:27实时爬取生成项目总数16个精选热门开源项目⭐总星数475.9K社区认可度指标今日热度+5.4K24小时新增关注数据洞察核心指标项目总览16个精选项目⭐社区认可475.9K总星标数今日热度5.4K新增关注
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- Python: 如何用Python的迭代器或生成器实现斐波那契数列
KevinShi_BJ
python
斐波那契数列(Fibonaccisequence)是指这样一个数列:1,1,2,3,5,8,13,21,34,55,89...这个数列从第3项开始,每一项都等于前两项之和。斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(LeonardoFibonacci)。以兔子繁殖为例子而引入,故又称为”兔子数列“。斐波那契数列又称黄金分割数列,n越大,相邻两值的比越接近黄金分割0.618,非常有趣。百
- HarmonyOS 生命周期详解:用三张图彻底搞懂 UIAbility、页面与组件的生命周期
作者:像素笔记|发布时间:2025年6月27日摘要本文通过三层结构图、状态流程图、对比表格三大图表,深入解析HarmonyOSArkUI的生命周期机制,涵盖UIAbility、页面、组件各层级的触发顺序与最佳实践。同时提供高级场景管理方案、常见误区分析及实战级生命周期管理工具设计,助你打造高性能、高稳定性的HarmonyOS应用!一、三层生命周期结构图(图1)下图展示了HarmonyOS应用框架的
- .NET9 实现 JSON 序列化和反序列化(Newtonsoft.Json & System.Text.Json)性能测试
为了在.NET9平台上对比Newtonsoft.Json和System.Text.Json的序列化与反序列化的性能,我们可以使用BenchmarkDotNet来进行压测。目录1.项目准备2.基准测试环境3.性能对比a.对象级别的序列化(Object-LevelSerialization)b.对象级别的反序列化(Object-LevelDeserialization)c.API响应级别的序列化(Ap
- java工厂模式
3213213333332132
java抽象工厂
工厂模式有
1、工厂方法
2、抽象工厂方法。
下面我的实现是抽象工厂方法,
给所有具体的产品类定一个通用的接口。
package 工厂模式;
/**
* 航天飞行接口
*
* @Description
* @author FuJianyong
* 2015-7-14下午02:42:05
*/
public interface SpaceF
- nginx频率限制+python测试
ronin47
nginx 频率 python
部分内容参考:http://www.abc3210.com/2013/web_04/82.shtml
首先说一下遇到这个问题是因为网站被攻击,阿里云报警,想到要限制一下访问频率,而不是限制ip(限制ip的方案稍后给出)。nginx连接资源被吃空返回状态码是502,添加本方案限制后返回599,与正常状态码区别开。步骤如下:
- java线程和线程池的使用
dyy_gusi
ThreadPoolthreadRunnabletimer
java线程和线程池
一、创建多线程的方式
java多线程很常见,如何使用多线程,如何创建线程,java中有两种方式,第一种是让自己的类实现Runnable接口,第二种是让自己的类继承Thread类。其实Thread类自己也是实现了Runnable接口。具体使用实例如下:
1、通过实现Runnable接口方式 1 2
- Linux
171815164
linux
ubuntu kernel
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.1.2-unstable/
安卓sdk代理
mirrors.neusoft.edu.cn 80
输入法和jdk
sudo apt-get install fcitx
su
- Tomcat JDBC Connection Pool
g21121
Connection
Tomcat7 抛弃了以往的DBCP 采用了新的Tomcat Jdbc Pool 作为数据库连接组件,事实上DBCP已经被Hibernate 所抛弃,因为他存在很多问题,诸如:更新缓慢,bug较多,编译问题,代码复杂等等。
Tomcat Jdbc P
- 敲代码的一点想法
永夜-极光
java随笔感想
入门学习java编程已经半年了,一路敲代码下来,现在也才1w+行代码量,也就菜鸟水准吧,但是在整个学习过程中,我一直在想,为什么很多培训老师,网上的文章都是要我们背一些代码?比如学习Arraylist的时候,教师就让我们先参考源代码写一遍,然
- jvm指令集
程序员是怎么炼成的
jvm 指令集
转自:http://blog.csdn.net/hudashi/article/details/7062675#comments
将值推送至栈顶时 const ldc push load指令
const系列
该系列命令主要负责把简单的数值类型送到栈顶。(从常量池或者局部变量push到栈顶时均使用)
0x02 &nbs
- Oracle字符集的查看查询和Oracle字符集的设置修改
aijuans
oracle
本文主要讨论以下几个部分:如何查看查询oracle字符集、 修改设置字符集以及常见的oracle utf8字符集和oracle exp 字符集问题。
一、什么是Oracle字符集
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系。ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据。它使数据库工具,错误消息,排序次序,日期,时间,货
- png在Ie6下透明度处理方法
antonyup_2006
css浏览器FirebugIE
由于之前到深圳现场支撑上线,当时为了解决个控件下载,我机器上的IE8老报个错,不得以把ie8卸载掉,换个Ie6,问题解决了,今天出差回来,用ie6登入另一个正在开发的系统,遇到了Png图片的问题,当然升级到ie8(ie8自带的开发人员工具调试前端页面JS之类的还是比较方便的,和FireBug一样,呵呵),这个问题就解决了,但稍微做了下这个问题的处理。
我们知道PNG是图像文件存储格式,查询资
- 表查询常用命令高级查询方法(二)
百合不是茶
oracle分页查询分组查询联合查询
----------------------------------------------------分组查询 group by having --平均工资和最高工资 select avg(sal)平均工资,max(sal) from emp ; --每个部门的平均工资和最高工资
- uploadify3.1版本参数使用详解
bijian1013
JavaScriptuploadify3.1
使用:
绑定的界面元素<input id='gallery'type='file'/>$("#gallery").uploadify({设置参数,参数如下});
设置的属性:
id: jQuery(this).attr('id'),//绑定的input的ID
langFile: 'http://ww
- 精通Oracle10编程SQL(17)使用ORACLE系统包
bijian1013
oracle数据库plsql
/*
*使用ORACLE系统包
*/
--1.DBMS_OUTPUT
--ENABLE:用于激活过程PUT,PUT_LINE,NEW_LINE,GET_LINE和GET_LINES的调用
--语法:DBMS_OUTPUT.enable(buffer_size in integer default 20000);
--DISABLE:用于禁止对过程PUT,PUT_LINE,NEW
- 【JVM一】JVM垃圾回收日志
bit1129
垃圾回收
将JVM垃圾回收的日志记录下来,对于分析垃圾回收的运行状态,进而调整内存分配(年轻代,老年代,永久代的内存分配)等是很有意义的。JVM与垃圾回收日志相关的参数包括:
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-Xloggc
-XX:+PrintGC
通
- Toast使用
白糖_
toast
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
- angular.identity
boyitech
AngularJSAngularJS API
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
- java-两整数相除,求循环节
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class CircleDigitsInDivision {
/**
* 题目:求循环节,若整除则返回NULL,否则返回char*指向循环节。先写思路。函数原型:char*get_circle_digits(unsigned k,unsigned j)
- Java 日期 周 年
Chen.H
javaC++cC#
/**
* java日期操作(月末、周末等的日期操作)
*
* @author
*
*/
public class DateUtil {
/** */
/**
* 取得某天相加(减)後的那一天
*
* @param date
* @param num
*
- [高考与专业]欢迎广大高中毕业生加入自动控制与计算机应用专业
comsci
计算机
不知道现在的高校还设置这个宽口径专业没有,自动控制与计算机应用专业,我就是这个专业毕业的,这个专业的课程非常多,既要学习自动控制方面的课程,也要学习计算机专业的课程,对数学也要求比较高.....如果有这个专业,欢迎大家报考...毕业出来之后,就业的途径非常广.....
以后
- 分层查询(Hierarchical Queries)
daizj
oracle递归查询层次查询
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
- 数据迁移
daysinsun
数据迁移
最近公司在重构一个医疗系统,原来的系统是两个.Net系统,现需要重构到java中。数据库分别为SQL Server和Mysql,现需要将数据库统一为Hana数据库,发现了几个问题,但最后通过努力都解决了。
1、原本通过Hana的数据迁移工具把数据是可以迁移过去的,在MySQl里面的字段为TEXT类型的到Hana里面就存储不了了,最后不得不更改为clob。
2、在数据插入的时候有些字段特别长
- C语言学习二进制的表示示例
dcj3sjt126com
cbasic
进制的表示示例
# include <stdio.h>
int main(void)
{
int i = 0x32C;
printf("i = %d\n", i);
/*
printf的用法
%d表示以十进制输出
%x或%X表示以十六进制的输出
%o表示以八进制输出
*/
return 0;
}
- NsTimer 和 UITableViewCell 之间的控制
dcj3sjt126com
ios
情况是这样的:
一个UITableView, 每个Cell的内容是我自定义的 viewA viewA上面有很多的动画, 我需要添加NSTimer来做动画, 由于TableView的复用机制, 我添加的动画会不断开启, 没有停止, 动画会执行越来越多.
解决办法:
在配置cell的时候开始动画, 然后在cell结束显示的时候停止动画
查找cell结束显示的代理
- MySql中case when then 的使用
fanxiaolong
casewhenthenend
select "主键", "项目编号", "项目名称","项目创建时间", "项目状态","部门名称","创建人"
union
(select
pp.id as "主键",
pp.project_number as &
- Ehcache(01)——简介、基本操作
234390216
cacheehcache简介CacheManagercrud
Ehcache简介
目录
1 CacheManager
1.1 构造方法构建
1.2 静态方法构建
2 Cache
2.1&
- 最容易懂的javascript闭包学习入门
jackyrong
JavaScript
http://www.ruanyifeng.com/blog/2009/08/learning_javascript_closures.html
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。
下面就是我的学习笔记,对于Javascript初学者应该是很有用的。
一、变量的作用域
要理解闭包,首先必须理解Javascript特殊
- 提升网站转化率的四步优化方案
php教程分享
数据结构PHP数据挖掘Google活动
网站开发完成后,我们在进行网站优化最关键的问题就是如何提高整体的转化率,这也是营销策略里最最重要的方面之一,并且也是网站综合运营实例的结果。文中分享了四大优化策略:调查、研究、优化、评估,这四大策略可以很好地帮助用户设计出高效的优化方案。
PHP开发的网站优化一个网站最关键和棘手的是,如何提高整体的转化率,这是任何营销策略里最重要的方面之一,而提升网站转化率是网站综合运营实力的结果。今天,我就分
- web开发里什么是HTML5的WebSocket?
naruto1990
Webhtml5浏览器socket
当前火起来的HTML5语言里面,很多学者们都还没有完全了解这语言的效果情况,我最喜欢的Web开发技术就是正迅速变得流行的 WebSocket API。WebSocket 提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术。这个新的API提供了一个方法,从客户端使用简单的语法有效地推动消息到服务器。让我们看一看6个HTML5教程介绍里 的 WebSocket API:它可用于客户端、服
- Socket初步编程——简单实现群聊
Everyday都不同
socket网络编程初步认识
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s
- 面试:Hashtable与HashMap的区别(结合线程)
toknowme
昨天去了某钱公司面试,面试过程中被问道
Hashtable与HashMap的区别?当时就是回答了一点,Hashtable是线程安全的,HashMap是线程不安全的,说白了,就是Hashtable是的同步的,HashMap不是同步的,需要额外的处理一下。
今天就动手写了一个例子,直接看代码吧
package com.learn.lesson001;
import java
- MVC设计模式的总结
xp9802
设计模式mvc框架IOC
随着Web应用的商业逻辑包含逐渐复杂的公式分析计算、决策支持等,使客户机越
来越不堪重负,因此将系统的商业分离出来。单独形成一部分,这样三层结构产生了。
其中‘层’是逻辑上的划分。
三层体系结构是将整个系统划分为如图2.1所示的结构[3]
(1)表现层(Presentation layer):包含表示代码、用户交互GUI、数据验证。
该层用于向客户端用户提供GUI交互,它允许用户