OpenCV图像处理(十四)霍夫变换理解

1、霍夫直线变换

霍夫变换是图像变换中的经典手段之一,主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。霍夫变换寻找直线与圆的方法相比与其它方法可以更好的减少噪声干扰。经典的霍夫变换常用来检测直线,圆,椭圆等。
然而在实现的图像处理领域,图像的像素坐标P(x, y)是已知的,而r, theta则是我们要寻找的变量。如果我们能绘制每个(r, theta)值根据像素点坐标P(x, y)值的话,那么就从图像笛卡尔坐标系统转换到极坐标霍夫空间系统,这种从点到曲线的变换称为直线的霍夫变换。变换通过量化霍夫参数空间为有限个值间隔等分或者累加格子。当霍夫变换算法开始,每个像素坐标点P(x, y)被转换到(r, theta)的曲线点上面,累加到对应的格子数据点,当一个波峰出现时候,说明有直线存在。同样的原理,我们可以用来检测圆,只是对于圆的参数方程变为如下等式:

(x –a ) ^2 + (y-b) ^ 2 = r^2

其中(a, b)为圆的中心点坐标,r圆的半径。这样霍夫的参数空间就变成一个三维参数空间。给定圆半径转为二维霍夫参数空间,变换相对简单,也比较常用。

OpenCV图像处理(十四)霍夫变换理解_第1张图片
image.png

image.png

如上图,假定在一个8 * 8的平面像素中有一条直线,并且从左上角(1,8)像素点开始分别计算θ为0°、45°、90°、135°、180°时的ρ,图中可以看出ρ分别为1、(9√2)/2、8、(7√2)/2、-1,并给这5个值分别记一票,同理计算像素点(3,6)点θ为0°、45°、90°、135°、180°时的ρ,再给计算出来的5个ρ值分别记一票,此时就会发现ρ = (9√2)/2的这个值已经记了两票了,以此类推,遍历完整个8 * 8的像素空间的时候ρ = (9√2)/2就记了5票, 别的ρ值的票数均小于5票,所以得到该直线在这个8 * 8的像素坐标中的极坐标方程为 (9√2)/2=x * Cos45°+y * Sin45°,到此该直线方程就求出来了。(PS:但实际中θ的取值不会跨度这么大,一般是PI/180)。

2、霍夫圆变换

霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点,跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位圆。在笛卡尔坐标系中圆的方程为:


image.png

OpenCV图像处理(十四)霍夫变换理解_第2张图片
image.png

其中(a,b)是圆心,r是半径,也可以表述为:


OpenCV图像处理(十四)霍夫变换理解_第3张图片
image.png

OpenCV图像处理(十四)霍夫变换理解_第4张图片
image.png

所以在abr组成的三维坐标系中,一个点可以唯一确定一个圆。

而在笛卡尔的xy坐标系中经过某一点的所有圆映射到abr坐标系中就是一条三维的曲线:

OpenCV图像处理(十四)霍夫变换理解_第5张图片
image.png

经过xy坐标系中所有的非零像素点的所有圆就构成了abr坐标系中很多条三维的曲线。

在xy坐标系中同一个圆上的所有点的圆方程是一样的,它们映射到abr坐标系中的是同一个点,所以在abr坐标系中该点就应该有圆的总像素N0个曲线相交。通过判断abr中每一点的相交(累积)数量,大于一定阈值的点就认为是圆。

以上是标准霍夫圆变换实现算法,问题是它的累加面试一个三维的空间,意味着比霍夫线变换需要更多的计算消耗。Opencv霍夫圆变换对标准霍夫圆变换做了运算上的优化。它采用的是“霍夫梯度法”。它的检测思路是去遍历累加所有非零点对应的圆心,对圆心进行考量。如何定位圆心呢?圆心一定是在圆上的每个点的模向量上,即在垂直于该点并且经过该点的切线的垂直线上,这些圆上的模向量的交点就是圆心。

霍夫梯度法就是要去查找这些圆心,根据该“圆心”上模向量相交数量的多少,根据阈值进行最终的判断。


OpenCV图像处理(十四)霍夫变换理解_第6张图片
image.png

转载:
https://blog.csdn.net/jia20003/article/details/7724530
https://blog.csdn.net/ycj9090900/article/details/52944708
https://blog.csdn.net/dcrmg/article/details/52506538

你可能感兴趣的:(OpenCV图像处理(十四)霍夫变换理解)