springcloud微服务实战 学习笔记五 Hystrix服务降级 Hystrix依赖隔离 断路器

服务降级

在之前eureka-consumer的基础上
添加依赖

    
        org.springframework.cloud
        spring-cloud-starter-hystrix
    

Application
添加注解@EnableCircuitBreaker或者@EnableHystrix
或者只需要一个注解@SpringCloudApplication

service

    @Service
    public class DemoService {
        @Autowired
        RestTemplate restTemplate;

        @HystrixCommand(fallbackMethod = "fallback")
        public String hello(){
            try {
                //Thread.sleep(5000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return restTemplate.getForObject("http://eureka-client/hello",String.class);
        }
        public String fallback(){
            return "fallback";
        }
    }

controller

    @GetMapping("/hello")
    public String hello2(){
        return demoService.hello();
    }

这样便实现了服务降级,将service中的Thread.sleep(5000)注释去掉,便可以模拟请求超时,系统便会调用fallback方法。

依赖隔离

“舱壁模式”对于熟悉Docker的读者一定不陌生,Docker通过“舱壁模式”实现进程的隔离,使得容器与容器之间不会互相影响。而Hystrix则使用该模式实现线程池的隔离,它会为每一个Hystrix命令创建一个独立的线程池,这样就算某个在Hystrix命令包装下的依赖服务出现延迟过高的情况,也只是对该依赖服务的调用产生影响,而不会拖慢其他的服务。

通过对依赖服务的线程池隔离实现,可以带来如下优势:

  • 应用自身得到完全的保护,不会受不可控的依赖服务影响。即便给依赖服务分配的线程池被填满,也不会影响应用自身的额其余部分。
  • 可以有效的降低接入新服务的风险。如果新服务接入后运行不稳定或存在问题,完全不会影响到应用其他的请求。
  • 当依赖的服务从失效恢复正常后,它的线程池会被清理并且能够马上恢复健康的服务,相比之下容器级别的清理恢复速度要慢得多。
  • 当依赖的服务出现配置错误的时候,线程池会快速的反应出此问题(通过失败次数、延迟、超时、拒绝等指标的增加情况)。同时,我们可以在不影响应用功能的情况下通过实时的动态属性刷新(后续会通过Spring Cloud Config与Spring Cloud Bus的联合使用来介绍)来处理它。
  • 当依赖的服务因实现机制调整等原因造成其性能出现很大变化的时候,此时线程池的监控指标信息会反映出这样的变化。同时,我们也可以通过实时动态刷新自身应用对依赖服务的阈值进行调整以适应依赖方的改变。
  • 除了上面通过线程池隔离服务发挥的优点之外,每个专有线程池都提供了内置的并发实现,可以利用它为同步的依赖服务构建异步的访问。

总之,通过对依赖服务实现线程池隔离,让我们的应用更加健壮,不会因为个别依赖服务出现问题而引起非相关服务的异常。同时,也使得我们的应用变得更加灵活,可以在不停止服务的情况下,配合动态配置刷新实现性能配置上的调整。

断路器

当我们把服务提供者eureka-client中加入了模拟的时间延迟之后,在服务消费端的服务降级逻辑因为hystrix命令调用依赖服务超时,触发了降级逻辑,但是即使这样,受限于Hystrix超时时间的问题,我们的调用依然很有可能产生堆积。

这个时候断路器就会发挥作用,那么断路器是在什么情况下开始起作用呢?这里涉及到断路器的三个重要参数:快照时间窗、请求总数下限、错误百分比下限。这个参数的作用分别是:

  • 快照时间窗:断路器确定是否打开需要统计一些请求和错误数据,而统计的时间范围就是快照时间窗,默认为最近的10秒。
  • 请求总数下限:在快照时间窗内,必须满足请求总数下限才有资格根据熔断。默认为20,意味着在10秒内,如果该hystrix命令的调用此时不足20次,即时所有的请求都超时或其他原因失败,断路器都不会打开。
  • 错误百分比下限:当请求总数在快照时间窗内超过了下限,比如发生了30次调用,如果在这30次调用中,有16次发生了超时异常,也就是超过50%的错误百分比,在默认设定50%下限情况下,这时候就会将断路器打开。

那么当断路器打开之后会发生什么呢?我们先来说说断路器未打开之前,对于之前那个示例的情况就是每个请求都会在当hystrix超时之后返回fallback,每个请求时间延迟就是近似hystrix的超时时间,如果设置为5秒,那么每个请求就都要延迟5秒才会返回。当熔断器在10秒内发现请求总数超过20,并且错误百分比超过50%,这个时候熔断器打开。打开之后,再有请求调用的时候,将不会调用主逻辑,而是直接调用降级逻辑,这个时候就不会等待5秒之后才返回fallback。通过断路器,实现了自动地发现错误并将降级逻辑切换为主逻辑,减少响应延迟的效果。

在断路器打开之后,处理逻辑并没有结束,我们的降级逻辑已经被成了主逻辑,那么原来的主逻辑要如何恢复呢?对于这一问题,hystrix也为我们实现了自动恢复功能。当断路器打开,对主逻辑进行熔断之后,hystrix会启动一个休眠时间窗,在这个时间窗内,降级逻辑是临时的成为主逻辑,当休眠时间窗到期,断路器将进入半开状态,释放一次请求到原来的主逻辑上,如果此次请求正常返回,那么断路器将继续闭合,主逻辑恢复,如果这次请求依然有问题,断路器继续进入打开状态,休眠时间窗重新计时。

通过上面的一系列机制,hystrix的断路器实现了对依赖资源故障的端口、对降级策略的自动切换以及对主逻辑的自动恢复机制。这使得我们的微服务在依赖外部服务或资源的时候得到了非常好的保护,同时对于一些具备降级逻辑的业务需求可以实现自动化的切换与恢复,相比于设置开关由监控和运维来进行切换的传统实现方式显得更为智能和高效。

我们使用了@HystrixCommand来将某个函数包装成了Hystrix命令,这里除了定义服务降级之外,Hystrix框架就会自动的为这个函数实现调用的隔离。所以,依赖隔离、服务降级在使用时候都是一体化实现的,这样利用Hystrix来实现服务容错保护在编程模型上就非常方便的,并且考虑更为全面。除了依赖隔离、服务降级之外,还有一个重要元素:断路器。这三个重要利器构成了Hystrix实现服务容错保护的强力组合拳。

你可能感兴趣的:(springcloud微服务实战 学习笔记五 Hystrix服务降级 Hystrix依赖隔离 断路器)