iOS 引用计数 retainCount、retain、release 源码分析+注释+实验

这篇文章与上一篇有较大的关联,没看过的可以先去看看 ^ _ ^

对象alloc后retainCount为什么引用计数为1

        Person *p = [Person alloc]; // extrac = 0
        // alloc出来的引用计数为多少 -- 0 -- 1
        NSLog(@"%lu",(unsigned long)[p retainCount]); // 1
        [p retain]; // extrac = 0  -  1
        NSLog(@"%lu",(unsigned long)[p retainCount]); // extrac+1 = 2
        [p release];// -1
        NSLog(@"1 == %lu",(unsigned long)[p retainCount]); // 1
        [p release];// 1-1 -- 引用计数位0的时候 我就析构 ? -- 响应 消息
        NSLog(@" 0 == %lu",(unsigned long)[p retainCount]); // 0
        [p release];// -1
        NSLog(@"-1 == %lu",(unsigned long)[p retainCount]); // -1
        NSLog(@"完了");

对象alloc的时候,最终会走向创建isa

iOS 引用计数 retainCount、retain、release 源码分析+注释+实验_第1张图片
image.png

并没有进行retainCount,引用计数为0,进行打印retainCount的时候由于当前引用计数为0,如果一直为0,那么对象就会被销毁,导致我们现在在做无用功,所以在 objc_object::rootRetainCount()中有判断 if (bits.nonpointer) {},isa初始化的时候,nonpointer为1,所以在调用retainCount时,会默认给该对象的引用计数+1。

inline uintptr_t 
objc_object::rootRetainCount()
{
    if (isTaggedPointer()) return (uintptr_t)this;

    sidetable_lock();
    isa_t bits = LoadExclusive(&isa.bits);
    
    ClearExclusive(&isa.bits);
    if (bits.nonpointer) {
        uintptr_t rc = 1 + bits.extra_rc;
        if (bits.has_sidetable_rc) {
            rc += sidetable_getExtraRC_nolock();
        }
        sidetable_unlock();
        return rc;
    }

    sidetable_unlock();
    return sidetable_retainCount();
}

retain & release

retain

执行顺序
<1> - (id)retain {}
<2> objc_object::rootRetain()参数分别:false,false
<3> objc_object::rootRetain(bool tryRetain, bool handleOverflow)
<4> 判断新旧isa是否一致循环,一致就执行<9>,否则执行<5>
<5> 循环获取旧值,并赋给新值,为新值进行extra_rc+1
<6> 判断是否溢出(x86_64 256),没溢出就执行<9>,溢出走<7>
<7> 执行rootRetain_overflow,回到<3>,handleOverflow为true,下次过来时执行<8>
<8> x86_64留下引用计数的一半128,复制另一半存进去散列表
<9> return

// 并且调用retain的时候,传入的两个参数均为false
ALWAYS_INLINE id 
objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
    if (isTaggedPointer()) return (id)this;

    bool sideTableLocked = false;
    bool transcribeToSideTable = false;
    
    isa_t oldisa;
    isa_t newisa;

    
    // 循环条件:判断是否独一份存储,对比新旧isa,如果不是,就循环
    do {
        transcribeToSideTable = false;
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
            else return sidetable_retain();
        }
        // don't check newisa.fast_rr; we already called any RR overrides
        // 如果当前对象的isa 正在销毁
        if (slowpath(tryRetain && newisa.deallocating)) {
            ClearExclusive(&isa.bits);
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            return nil;
        }
        //是否溢出,
        //经过实验:在x86_64架构下,当newisa.extra_rc为255时,在进行addc,就会发生溢出
        //溢出之后,将会拿2的7次方的extra_rc 存到散列表中,newisa.extra_rc回到128
        uintptr_t carry;
        //这里newisa.extra_rc 会+1 RC_ONE
        newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc++
        printf("%lu,",newisa.extra_rc);
        //newisa.extra_rc++如果溢出
        if (slowpath(carry)) {
            // newisa.extra_rc++ overflowed
            //第一次来的话,handleOverflow是false,会进判断语句
            if (!handleOverflow) {
                ClearExclusive(&isa.bits);
                //这里重新调用了当前方法rootRetain,但是handleOverflow = true
                return rootRetain_overflow(tryRetain);
            }
            // Leave half of the retain counts inline and 
            // prepare to copy the other half to the side table.
            // retry之后会来到这里
            // 翻译:留下内部关联对象的一半,准备复制另一半存进去散列表
            if (!tryRetain && !sideTableLocked) {
                sidetable_lock();
            }
            sideTableLocked = true;
            transcribeToSideTable = true;
            newisa.extra_rc = RC_HALF;
            newisa.has_sidetable_rc = true;
        }
        //当且仅当旧值与存储中的当前值一致时,才把新值写入存储。
    } while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)));

    if (slowpath(transcribeToSideTable)) {
        // Copy the other half of the retain counts to the side table.
        // 拷贝一半(128)进散列表
        sidetable_addExtraRC_nolock(RC_HALF);
    }

    if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
    return (id)this;
}
sidetable_addExtraRC_nolock散列表添加引用计数

这个在上一篇文章,内存管理方案中已经有提到过了,这里在发一次,加点印象。

bool 
objc_object::sidetable_addExtraRC_nolock(size_t delta_rc)
{
    assert(isa.nonpointer);
    // 通过SideTables() 获取SideTable
    SideTable& table = SideTables()[this];

    //获取引用计数的size
    size_t& refcntStorage = table.refcnts[this];
    // 赋值给oldRefcnt
    size_t oldRefcnt = refcntStorage;
    // isa-side bits should not be set here
    assert((oldRefcnt & SIDE_TABLE_DEALLOCATING) == 0);
    assert((oldRefcnt & SIDE_TABLE_WEAKLY_REFERENCED) == 0);

    // 如果oldRefcnt & SIDE_TABLE_RC_PINNED = 1
    // 就是 oldRefcnt = 2147483648 (32位情况)
    if (oldRefcnt & SIDE_TABLE_RC_PINNED) return true;
    
    //引用计数也溢出判断参数
    uintptr_t carry;
    
    // 引用计数 add
    //delta_rc左移两位,右边的两位分别是DEALLOCATING(销毁ing) 跟WEAKLY_REFERENCED(弱引用计数)
    size_t newRefcnt = 
        addc(oldRefcnt, delta_rc << SIDE_TABLE_RC_SHIFT, 0, &carry);
    //如果sidetable也溢出了。
    //这里我for了几百万次,也没有溢出,可见sidetable能容纳很多的引用计数
    if (carry) {
        // 如果是32位的情况 SIDE_TABLE_RC_PINNED = 1<< (32-1)
        // int的最大值 SIDE_TABLE_RC_PINNED = 2147483648
        //  SIDE_TABLE_FLAG_MASK = 3
        // refcntStorage = 2147483648 | (oldRefcnt & 3)
        // 如果溢出,直接把refcntStorage 设置成最大值
        refcntStorage =
            SIDE_TABLE_RC_PINNED | (oldRefcnt & SIDE_TABLE_FLAG_MASK);
        return true;
    }
    else {
        refcntStorage = newRefcnt;
        return false;
    }
}
release

执行顺序
<1> - (oneway void)release {}
<2> objc_object::rootRelease() 参数分别:true,false
<3> objc_object::rootRelease(bool performDealloc, bool handleUnderflow)
<4> 判断新旧isa是否一致循环,一致就执行return,否则执行<5>
<5> 循环获取旧值,并赋给新值,为新值进行extra_rc-1
<6> 判断是否溢出,没溢出就执行return,溢出走<7> underflow
<7> 判断是否有用到散列表
<8> 从散列表中拿出RC_HALF,将这部分存进newisa
<9> 存成功就return,不成功就重试,再不行就把拿出来的放回去,然后goto retry;
<10> dealloc

ALWAYS_INLINE bool 
objc_object::rootRelease(bool performDealloc, bool handleUnderflow)
{
    if (isTaggedPointer()) return false;

    bool sideTableLocked = false;
    //新旧isa
    isa_t oldisa;
    isa_t newisa;

 retry:
    //跟retain一样的判断条件
    do {
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (sideTableLocked) sidetable_unlock();
            return sidetable_release(performDealloc);
        }
        // don't check newisa.fast_rr; we already called any RR overrides
        uintptr_t carry;
        //newisa.extra_rc-1
        //如果溢出的时候, newisa.extra_rc = 255
        newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc--
        if (slowpath(carry)) {
            // don't ClearExclusive()
            //如果溢出走这
            printf("释放溢出了,underflow\n");
            goto underflow;
        }
    } while (slowpath(!StoreReleaseExclusive(&isa.bits, 
                                             oldisa.bits, newisa.bits)));

    if (slowpath(sideTableLocked)) sidetable_unlock();
    return false;

 underflow:
    // newisa.extra_rc-- underflowed: borrow from side table or deallocate

    // abandon newisa to undo the decrement
    // 重新把旧isa给新isa,意思是把引用计数-1操作还原
    // 这时候的 newisa.extra_rc = 0
    newisa = oldisa;
    // retain的时候。如果有用到散列表,会 newisa.has_sidetable_rc = true;
    if (slowpath(newisa.has_sidetable_rc)) {
        printf("发现has_sidetable_rc = true \n");
        // 调用release的时候handleUnderflow = false
        if (!handleUnderflow) {
            ClearExclusive(&isa.bits);
            //类似retain时候retry,重新来一次,但是handleUnderflow为true
            return rootRelease_underflow(performDealloc);
        }

        // Transfer retain count from side table to inline storage.
        // 进判断前 sideTableLocked 没有重新赋值,所以一直是false
        if (!sideTableLocked) {
            ClearExclusive(&isa.bits);
            sidetable_lock();
            sideTableLocked = true;
            // Need to start over to avoid a race against 
            // the nonpointer -> raw pointer transition.
            // 去retry,重新回到上面,重复走一遍
            goto retry;
        }

        // Try to remove some retain counts from the side table.
        // 从散列表中拿出RC_HALF的引用计数
        size_t borrowed = sidetable_subExtraRC_nolock(RC_HALF);
        printf("借出来的 size === %lu \n",borrowed);
        // To avoid races, has_sidetable_rc must remain set 
        // even if the side table count is now zero.

        if (borrowed > 0) {
            // Side table retain count decreased.
            // Try to add them to the inline count.
            newisa.extra_rc = borrowed - 1;  // redo the original decrement too
            // 把拿出来的引用计数存到newisa
            bool stored = StoreReleaseExclusive(&isa.bits, 
                                                oldisa.bits, newisa.bits);
            if (!stored) {
                //如果没存成功,就换个姿势再试试
                // Inline update failed. 
                // Try it again right now. This prevents livelock on LL/SC 
                // architectures where the side table access itself may have 
                // dropped the reservation.
                isa_t oldisa2 = LoadExclusive(&isa.bits);
                isa_t newisa2 = oldisa2;
                if (newisa2.nonpointer) {
                    uintptr_t overflow;
                    newisa2.bits = 
                        addc(newisa2.bits, RC_ONE * (borrowed-1), 0, &overflow);
                    if (!overflow) {
                        stored = StoreReleaseExclusive(&isa.bits, oldisa2.bits, 
                                                       newisa2.bits);
                    }
                }
            }

            if (!stored) {
                // 如果还是没成功,把拿出来的放回去
                // Inline update failed.
                // Put the retains back in the side table.
                sidetable_addExtraRC_nolock(borrowed);
                goto retry;
            }

            // Decrement successful after borrowing from side table.
            // This decrement cannot be the deallocating decrement - the side 
            // table lock and has_sidetable_rc bit ensure that if everyone 
            // else tried to -release while we worked, the last one would block.
            sidetable_unlock();
            return false;
        }
        else {
            // Side table is empty after all. Fall-through to the dealloc path.
        }
    }

    // Really deallocate.
    // 如果newisa.has_sidetable_rc != true;
    // 就抛错,release太多
    if (slowpath(newisa.deallocating)) {
        ClearExclusive(&isa.bits);
        if (sideTableLocked) sidetable_unlock();
        return overrelease_error();
        // does not actually return
    }
    newisa.deallocating = true;
    if (!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)) goto retry;

    if (slowpath(sideTableLocked)) sidetable_unlock();

    __sync_synchronize();
    if (performDealloc) {
        ((void(*)(objc_object *, SEL))objc_msgSend)(this, SEL_dealloc);
    }
    return true;
}

实验:

在这个实验中

  1. 我先对p retain了257次,256次保证溢出,在第257次时观察在已经使用到了sidetable的情况下的引用计数。
  2. 然后再对p release了260次,保证能release次数大于retain次数,保证p dealloc,并且观察在dealloc后,继续release的情况。
        Person *p =[Person alloc]; // extrac = 0
        NSLog(@"开始retain\n");
        // 在Mac下 保证能retain溢出,并多retain一次
        for (int i = 0 ; i<257; i++) {
            [p retain];
        }
        NSLog(@"开始release\n");
        // 在Mac下 保证能release溢出,并且多释放几次
        for (int i = 0 ; i<260; i++) {
            [p release];
        }
  1. 然后我在源码中各个位置都做了log处理,观察进行lldb调试


    iOS 引用计数 retainCount、retain、release 源码分析+注释+实验_第2张图片
    retainlog标记.png

    iOS 引用计数 retainCount、retain、release 源码分析+注释+实验_第3张图片
    releaselog标记.png
  2. 先看retain的log


    iOS 引用计数 retainCount、retain、release 源码分析+注释+实验_第4张图片
    image.png
  3. retain结论:在retain发生溢出后,会存入128到散列表,newisa的当前引用计数为128,再继续retain就在128的基础上+1。

  4. 看release的log ,此时p的引用计数为129(但是如果调用retainCount就会是130)

    iOS 引用计数 retainCount、retain、release 源码分析+注释+实验_第5张图片
    image.png

  5. release总结:

<1> 在release发生溢出,且当前newisa的has_sidetable_rc为true后> <2> 走performDealloc,将handleUnderflow设置成true,然后再递归一次
<3> 过了handleUnderflow这关之后,继续遇到了sideTableLocked
<4> release的时候sideTableLocked默认为false,把sideTableLocked设置为true后,就又要回到retry(这里应该不算递归),又走了一遍上面的一大串代码。
<5> 可谓是过关斩将遇到两个拦路虎handleUnderflow 、sideTableLocked,过了两关后,从sidetable中拿出RC_HALF(2^7)的引用计数,-1 之后交给当前newisa.extra_rc。

TO BE CONTINUE ~

你可能感兴趣的:(iOS 引用计数 retainCount、retain、release 源码分析+注释+实验)