简单高效的布隆过滤器

本文翻译自Bloom filters, fast and simple

简介

每个人都总在胡乱谈论布隆过滤器(bloom filters),但是布隆过滤器究竟是什么、有什么用途?

布隆过滤器是一个空间高效的概率数据结构,用于判断一个元素是否属于一个集合。

操作

布隆过滤器主要支持两种操作:add和query.

query操作用来检查一个元素是否在集合中,它返回一个布尔值:

  • true 如果元素可能在集合中
  • false 如果元素肯定不在集合中

add操作将一个元素添加到集合中。

在这种简单的布隆过滤器中,删除元素操作会导致false negative,但是一些布隆过滤器变型支持删除元素操作,比如计数过滤器(counting filters)

结构

简单高效的布隆过滤器_第1张图片
布隆过滤器的结构

布隆过滤器的内部实现使用一个bit数组和多个不同的hash函数。

例子

假设有一个大小为100的bit数组和3个hash函数。

对于add操作,添加一个单词"Maciej"到布隆过滤器中:

  1. 先计算这个单词的3个hash值
  2. 然后把bit数组中相应bit置为1

对于query操作,判断这个单词是否在集合中:

  1. 计算这个单词的3个hash值
  2. 如果bit数组相应的3个bit都被置为1,那么认为这个单词在集合中,否则不在集合中

实现

#!/usr/bin/env python

from hashlib import sha256

class Filter(object):
    """A simple bloom filter for lots of int()"""

    def __init__(self, array_size=(1 * 1024), hashes=13):
        """Initializes a Filter() object
        Expects:
           array_size (in bytes): 4 * 1024 for a 4KB filter
           hashes (int): for the number of hashes to perform
        """

        self.filter = bytearray(array_size)     # The filter itself
        self.bitcount = array_size * 8          # Bits in the filter
        self.hashes = hashes                    # The number of hashes to use

    def _hash(self, value):
        """Creates a hash of an int and yields a generator of hash functions
        Expects:
           value: int()
        Yields:
           generator of ints()
        """
        # Build an int() around the sha256 digest of int() -> value
        digest = int(sha256(value.__str__()).hexdigest(), 16)
        for _ in range(self.hashes):
            # bitwise AND of the digest and all of the available bit positions
            # in the filter
            yield digest & (self.bitcount - 1)
            # Shift bits in digest to the right, based on 256 (in sha256)
            # divided by the number of hashes needed be produced.
            # Rounding the result by using int().
            # So: digest >>= (256 / 13) would shift 19 bits to the right.
            digest >>= (256 / self.hashes)

    def add(self, value):
        """Bitwise OR to add value(s) into the self.filter
        Expects:
           value: generator of digest ints()
        """
        for digest in self._hash(value):
            # In-place bitwise OR of the filter, position is determined
            # by the (digest / 8) digest is described above in self._hash()
            # Bitwise OR is undertaken on the value at the location and
            # 2 to the power of digest modulo 8. Ex: 2 ** (30034 % 8)
            # to grantee the value is <= 128, the bytearray not being able
            # to store a value >= 256. Q: Why not use ((modulo 9) -1) then?
            self.filter[(digest / 8)] |= (2 ** (digest % 8))
            # The purpose here is to spread out the hashes to create a unique
            # "fingerprint" with unique locations in the filter array,
            # rather than just a big long hash blob.

    def query(self, value):
        """Bitwise AND to query values in self.filter
        Expects:
           value: value to check filter against (assumed int())
        """
        # If all() hashes return True from a bitwise AND (the opposite
        # described above in self.add()) for each digest returned from
        # self._hash return True, else False
        return all(self.filter[(digest / 8)] & (2 ** (digest % 8))
            for digest in self._hash(value))


if __name__ == "__main__":
    bf = Filter()

    bf.add(1234)
    bf.add(40005)
    bf.add(1)

    print("Filter size {0} bytes").format(bf.filter.__sizeof__())

    print bf.query(1)            # True
    print bf.query(40005)        # True
    print bf.query(123)          # False

你可能感兴趣的:(简单高效的布隆过滤器)