KAFKA的启动
直接运行Kafka.scala中的main方法(需要指定启动参数,也就是server.properties的位置)来启动Kafka。因为kafka依赖zookeeper,所以我们需要提前启动zookeeper,然后在server.properties中指定zk地址后,启动。
看一下main()方法:
def main(args: Array[String]): Unit = {
try {
// 加载对应的server.properties配置文件,并生成Properties实例.
val serverProps = getPropsFromArgs(args)
//这里生成一个KafkaServer的实例,这个实例生成时,会在实例中同时生成一个KafkaServer的实例,
// 生成KafkaServer实例前,需要先通过serverProps生成出一个KafkaConfig的实例.
val kafkaServerStartable = KafkaServerStartable.fromProps(serverProps)
// attach shutdown handler to catch control-c
Runtime.getRuntime().addShutdownHook(new Thread() {
override def run() = {
kafkaServerStartable.shutdown
}
})
// 停止 服务
kafkaServerStartable.startup
kafkaServerStartable.awaitShutdown
}
catch {
case e: Throwable =>
fatal(e)
System.exit(1)
}
System.exit(0)
}
根据properties生成server实例
getPropsFromArgs(args),这一行很明确,就是从配置文件中读取我们配置的内容,然后赋值给serverProps。
KafkaServerStartable.fromProps(serverProps),
object KafkaServerStartable {
def fromProps(serverProps: Properties) = {
KafkaMetricsReporter.startReporters(new VerifiableProperties(serverProps))
new KafkaServerStartable(KafkaConfig.fromProps(serverProps))
}
}
这块主要是启动了一个内部的监控服务(内部状态监控)。
KafkaServer的启动
下面是一个在java中常见的钩子函数,在关闭时会启动一些销毁程序,保证程序安全关闭。kafkaServerStartable.startup。跟进去可以很清楚的看到,里面调用的方法是KafkaServer中的startup方法:
// 启动kafka的调度器,这个KafkaScheduler的实例生成时需要得到background.threads配置的值,默认是10个,用于配置后台线程池的个数
def startup() {
try {
info("starting")
if(isShuttingDown.get)
throw new IllegalStateException("Kafka server is still shutting down, cannot re-start!")
if(startupComplete.get)
return
val canStartup = isStartingUp.compareAndSet(false, true)
if (canStartup) {
metrics = new Metrics(metricConfig, reporters, kafkaMetricsTime, true)
brokerState.newState(Starting)
// 启动scheduler 实例
/* start scheduler */
kafkaScheduler.startup()
// 生产zk 初始化 并依赖 判断 broker 是否发生变化
/* setup zookeeper */
zkUtils = initZk()
// 初始化创建并启动LogManager的实例,
/* start log manager */
logManager = createLogManager(zkUtils.zkClient, brokerState)
logManager.startup()
// 如果broker.id的配置没有配置(小于0的值时),同时broker.id.generation.enable配置为true,默认也就是true,
// 这个时候根据zk中/brokers/seqid路径的version值,第一次从0开始,每次增加.并加上reserved.broker.max.id配置的值,默认是1000,
//来充当这个server的broker.id,同时把这个broker.id更新到logDir目录下的meta.properties文件中,
//下次读取时,直接读取这个配置文件中的broker.id的值,而不需要重新进行创建.
/* generate brokerId */
config.brokerId = getBrokerId
this.logIdent = "[Kafka Server " + config.brokerId + "], "
// 启动 kafka 的sockerServer
socketServer = new SocketServer(config, metrics, kafkaMetricsTime)
socketServer.startup()
//,生成并启动ReplicaManager,此实例依赖kafkaScheduler与logManager实例.
/* start replica manager */
replicaManager = new ReplicaManager(config, metrics, time, kafkaMetricsTime, zkUtils, kafkaScheduler, logManager,
isShuttingDown)
replicaManager.startup()
//生成并启动KafkaController实例,此使用用于控制当前的broker中的所有的leader的partition的操作.
/* start kafka controller */
kafkaController = new KafkaController(config, zkUtils, brokerState, kafkaMetricsTime, metrics, threadNamePrefix)
kafkaController.startup()
//生成并启动GroupCoordinator的实例,这个是0.9新加入的一个玩意,用于对consumer中新加入的与partition的检查,并对partition与consumer进行平衡操作.
/* start group coordinator */
groupCoordinator = GroupCoordinator(config, zkUtils, replicaManager, kafkaMetricsTime)
groupCoordinator.startup()
// 根据authorizer.class.name配置项配置的Authorizer的实现类,生成一个用于认证的实例,用于对用户的操作进行认证.这个默认为不认证.
/* Get the authorizer and initialize it if one is specified.*/
authorizer = Option(config.authorizerClassName).filter(_.nonEmpty).map { authorizerClassName =>
val authZ = CoreUtils.createObject[Authorizer](authorizerClassName)
authZ.configure(config.originals())
authZ
}
// 成用于对外对外提供服务的KafkaApis实例,并设置当前的broker的状态为运行状态
/* start processing requests */
apis = new KafkaApis(socketServer.requestChannel, replicaManager, groupCoordinator,
kafkaController, zkUtils, config.brokerId, config, metadataCache, metrics, authorizer)
requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, config.numIoThreads)
brokerState.newState(RunningAsBroker)
Mx4jLoader.maybeLoad()
//生成动态配置修改的处理管理,主要是topic修改与client端配置的修改,并把已经存在的clientid对应的配置进行修改.
/* start dynamic config manager */
dynamicConfigHandlers = Map[String, ConfigHandler](ConfigType.Topic -> new TopicConfigHandler(logManager, config),
ConfigType.Client -> new ClientIdConfigHandler(apis.quotaManagers))
// Apply all existing client configs to the ClientIdConfigHandler to bootstrap the overrides
// TODO: Move this logic to DynamicConfigManager
AdminUtils.fetchAllEntityConfigs(zkUtils, ConfigType.Client).foreach {
case (clientId, properties) => dynamicConfigHandlers(ConfigType.Client).processConfigChanges(clientId, properties)
}
// 创建一个配置实例 并发起通知给个个block
// Create the config manager. start listening to notifications
dynamicConfigManager = new DynamicConfigManager(zkUtils, dynamicConfigHandlers)
dynamicConfigManager.startup()
/* tell everyone we are alive */
val listeners = config.advertisedListeners.map {case(protocol, endpoint) =>
if (endpoint.port == 0)
(protocol, EndPoint(endpoint.host, socketServer.boundPort(protocol), endpoint.protocolType))
else
(protocol, endpoint)
}
kafkaHealthcheck = new KafkaHealthcheck(config.brokerId, listeners, zkUtils, config.rack,
config.interBrokerProtocolVersion)
kafkaHealthcheck.startup()
// Now that the broker id is successfully registered via KafkaHealthcheck, checkpoint it
checkpointBrokerId(config.brokerId)
/* register broker metrics */
registerStats()
shutdownLatch = new CountDownLatch(1)
startupComplete.set(true)
isStartingUp.set(false)
AppInfoParser.registerAppInfo(jmxPrefix, config.brokerId.toString)
info("started")
}
}
catch {
case e: Throwable =>
fatal("Fatal error during KafkaServer startup. Prepare to shutdown", e)
isStartingUp.set(false)
shutdown()
throw e
}
}
首先判断是否目前正在关闭中或者已经启动了,这两种情况直接抛出异常。然后是一个CAS的操作isStartingUp,防止线程并发操作启动,判断是否可以启动。如果可以启动,就开始我们的启动过程。
构造Metrics类
定义broker状态为启动中starting
启动定时器kafkaScheduler.startup()
构造zkUtils:利用参数中的zk信息,启动一个zk客户端
启动文件管理器:读取zk中的配置信息,包含__consumer_offsets和system.topic。重点是启动一些定时任务,来删除符合条件的记录(cleanupLogs),清理脏记录(flushDirtyLogs),把所有记录写到一个文本文件中,防止在启动时重启所有的记录文件(checkpointRecoveryPointOffsets)。
/**
* Start the background threads to flush logs and do log cleanup
*/
def startup() {
/* Schedule the cleanup task to delete old logs */
if(scheduler != null) {
info("Starting log cleanup with a period of %d ms.".format(retentionCheckMs))
scheduler.schedule("kafka-log-retention",
cleanupLogs,
delay = InitialTaskDelayMs,
period = retentionCheckMs,
TimeUnit.MILLISECONDS)
info("Starting log flusher with a default period of %d ms.".format(flushCheckMs))
scheduler.schedule("kafka-log-flusher",
flushDirtyLogs,
delay = InitialTaskDelayMs,
period = flushCheckMs,
TimeUnit.MILLISECONDS)
scheduler.schedule("kafka-recovery-point-checkpoint",
checkpointRecoveryPointOffsets,
delay = InitialTaskDelayMs,
period = flushCheckpointMs,
TimeUnit.MILLISECONDS)
}
if(cleanerConfig.enableCleaner)
cleaner.startup()
}