Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别

参考文献:
《基于卷积神经网络的人脸识别研究》 李春利,柳振东,惠康华

文章中基于经典的网络LeNet-5的结构,提出了一种适用于ORL数据集的CNN结构,在该数据集上取得了较高的识别率。

本文是在参考此论文的基础上,使用tensorflow实现了文中相关理论。

ORL训练集byCSDN

训练集下载解压后可以看到,ORL训练集一共有40类,每一类有10张bmp类型的图片。


Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别_第1张图片
目录
Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别_第2张图片
s1中图片

首先我们需要做的就是将这些数据读入,制作我们自己的训练集和测试集。

input_path = "./orl"
train_path = "./train"
test_path = "./test"

if not os.path.exists(train_path):
    os.mkdir(train_path)

if not os.path.exists(test_path):
    os.mkdir(test_path)

for i in range(1, 41):
    if not os.path.exists(train_path + '/' + str(i)):
        os.mkdir(train_path + '/' + str(i))
    if not os.path.exists(test_path + '/' + str(i)):
        os.mkdir(test_path + '/' + str(i))


# 生成训练和测试的数据
def generate_data(train_path, test_path):
    index = 1
    output_index = 1
    for (dirpath, dirnames, filenames) in os.walk(input_path):
        # 打乱文件列表,相当于是随机选取8张训练集,2张测试
        random.shuffle(filenames)
        for filename in filenames:
            if filename.endswith('.bmp'):
                img_path = dirpath + '/' + filename
                # 使用opencv 读取图片
                img_data = cv2.imread(img_path)
                # 按照论文中的将图片大小调整为28 * 28
                img_data = cv2.resize(img_data, (28, 28), interpolation=cv2.INTER_AREA)
                if index < 3:
                    cv2.imwrite(test_path + '/' + str(output_index) + '/' + str(index) + '.jpg', img_data)
                    index += 1
                elif 10 >= index >= 3:
                    cv2.imwrite(train_path + '/' + str(output_index) + '/' + str(index) + '.jpg', img_data)
                    index += 1
                if index > 10:
                    output_index += 1
                    index = 1

运行完后我们便得到了320张训练集,80张测试集,所得的样本都是通过随机选取。

训练集:

Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别_第3张图片
训练集
Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别_第4张图片
第一类别

测试集:

Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别_第5张图片
image.png

将train和test写入到tfrecord的同时进行标注

# 生成整数型的属性
def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))


# 生成字符串类型
def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


train_path = "./train/"
test_path = "./test/"
classes = {i: i for i in range(1, 41)}
writer_train = tf.python_io.TFRecordWriter("orl_train.tfrecords")
writer_test = tf.python_io.TFRecordWriter("orl_test.tfrecords")


def generate():
    # 遍历字典
    for index, name in enumerate(classes):
        train = train_path + str(name) + '/'
        test = test_path + str(name) + '/'
        for img_name in os.listdir(train):
            img_path = train + img_name  # 每一个图片的地址
            img = cv2.imread(img_path)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            img_raw = img.tobytes()
            example = tf.train.Example(features=tf.train.Features(feature={
                'label': _int64_feature(index + 1),
                'img_raw': _bytes_feature(img_raw)
            }))
            writer_train.write(example.SerializeToString())
        for img_name in os.listdir(test):
            img_path = test + img_name  # 每一个图片的地址
            img = cv2.imread(img_path)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            img_raw = img.tobytes()
            example = tf.train.Example(features=tf.train.Features(feature={
                'label': _int64_feature(index + 1),
                'img_raw': _bytes_feature(img_raw)
            }))
            writer_test.write(example.SerializeToString())
    writer_test.close()
    writer_train.close()

接下来开始训练:

def train(data, label):
    x = tf.placeholder(tf.float32,
                       [BATCH_SIZE, SIZE, SIZE, orl_inference.NUM_CHANNELS],
                       name='x-input')

    y_ = tf.placeholder(tf.float32, [None, orl_inference.OUTPUT_NODE], name='y-output')

    # 使用L2正则化计算损失函数
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)

    min_after_dequeue = 100
    capacity = min_after_dequeue + 3 * BATCH_SIZE
    image_batch, label_batch = tf.train.shuffle_batch(
        [data, label], batch_size=BATCH_SIZE,
        capacity=capacity, min_after_dequeue=min_after_dequeue
    )

    y = orl_inference.inference(x, False, regularizer)

    global_step = tf.Variable(0, trainable=False)

    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step
    )

    variable_averages_op = variable_averages.apply(tf.trainable_variables())

    # 计算交叉熵作为刻画预测值和真实值之间的损失函数
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))

    # 计算所有样例中交叉熵的平均值
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    # 总损失等于交叉熵损失和正则化损失的和
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))

    # 设置指数衰减的学习率
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        320 / BATCH_SIZE,
        LEARNING_RATE_DECAY,
        staircase=True
    )

    # 优化损失函数
    train_step = tf.train.GradientDescentOptimizer(learning_rate) \
        .minimize(loss, global_step=global_step)

    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name='train')
    saver = tf.train.Saver()

    # 验证
    # accuracy = tf.reduce_mean()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        # 迭代的训练网络
        for i in range(TRAINING_STEPS):
            xs, ys = sess.run([image_batch, label_batch])
            xs = xs / 255.0
            reshaped_xs = np.reshape(xs, (BATCH_SIZE,
                                          SIZE,
                                          SIZE,
                                          orl_inference.NUM_CHANNELS))
            # 将图像和标签数据通过tf.train.shuffle_batch整理成训练时需要的batch
            ys = get_label(ys)
            _, loss_value, step = sess.run([train_op, loss, global_step],
                                           feed_dict={x: reshaped_xs, y_: ys})

            if i % 100 == 0:
                # 每10轮输出一次在训练集上的测试结果
                acc = loss.eval({x: reshaped_xs, y_: ys})
                print("After %d training step[s], loss on training"
                      " batch is %g. " % (step, loss_value))

                saver.save(
                    sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
                    global_step=global_step
                )
                # logit = orl_inference.inference(image_batch)
        coord.request_stop()
        coord.join(threads)
Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别_第6张图片
训练过程

进行验证:

def evaluate():
    with tf.Graph().as_default() as g:
        filename_queue = tf.train.string_input_producer(["orl_test.tfrecords"])
        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(filename_queue)
        features = tf.parse_single_example(serialized_example,
                                           features={
                                               'label': tf.FixedLenFeature([], tf.int64),
                                               'img_raw': tf.FixedLenFeature([], tf.string),
                                           })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [28, 28, 1])
        label = tf.cast(features['label'], tf.int32)
        min_after_dequeue = 100
        capacity = min_after_dequeue + 3 * 200
        image_batch, label_batch = tf.train.shuffle_batch(
            [img, label], batch_size=80,
            capacity=capacity, min_after_dequeue=min_after_dequeue
        )

        x = tf.placeholder(tf.float32,
                           [80,
                            orl_inference.IMAGE_SIZE,
                            orl_inference.IMAGE_SIZE,
                            orl_inference.NUM_CHANNELS],
                           name='x-input')
        y_ = tf.placeholder(
            tf.float32, [None, orl_inference.OUTPUT_NODE], name='y-input'
        )

        y = orl_inference.inference(x, None, None)

        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        variable_averages = tf.train.ExponentialMovingAverage(
            orl_train.MOVING_AVERAGE_DECAY
        )
        variable_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variable_to_restore)

        # 每隔EVAL_INTERVAL_SECS秒调用一次
        while True:
            with tf.Session() as sess:
                test = cv2.imread('./data/20/10.jpg')
                test = cv2.cvtColor(test, cv2.COLOR_BGR2GRAY)
                test = np.array(test)
                test = test / 255.0
                test_re = np.reshape(test, (1, 28, 28, 1))

                coord = tf.train.Coordinator()
                threads = tf.train.start_queue_runners(sess=sess, coord=coord)
                xs, ys = sess.run([image_batch, label_batch])
                ys = get_label(ys)
                xs = xs / 255.0
                validate_feed = {x: xs,
                                 y_: ys}

                cpkt = tf.train.get_checkpoint_state(
                    orl_train.MODEL_SAVE_PATH
                )
                if cpkt and cpkt.model_checkpoint_path:
                    # 加载模型
                    saver.restore(sess, cpkt.model_checkpoint_path)
                    # 通过文件名得到模型保存时迭代的轮数
                    global_step = cpkt.model_checkpoint_path \
                        .split('/')[-1].split('-')[-1]
                    # result = sess.run(y, feed_dict={x: test_re})
                    # re = np.where(result == np.max(result))
                    # ss = tf.argmax(result, 1)
                    # tt = np.argmax(result, 1)
                    # print('result is %d'%(tt[0] + 1))
                    # # print('hehe')
                    accuracy_score = sess.run(accuracy,feed_dict=validate_feed)
                    print("After %s training steps, validation "
                          "accuracy = %g" % (global_step, accuracy_score))
                else:
                    print("No checkpoint file found")
                    return
            time.sleep(EVAL_INTERVAL_SECS)
验证结果

此次实验参考了《Tensorflow 实战Google深度学习框架》这本书的内容,根据所学内容,将文献中的实验实践了一遍,也算是加深了理解。
完整代码:听说star的人会变帅

你可能感兴趣的:(Tensorflow学习笔记-基于LeNet5结构的ORL数据集识别)