library(dplyr)
options(width=105)
chicago<-readRDS("chicago,rds")
dim(chicago)
str(chicago)
names(chicago)
head(select(chicago), city:dptp)) #把city到dptp之间的变量都选出来
head(select(chicago), -(city:dptp))) #把除city到dptp之间的变量外的都选出来
#如果不用dplyr,代码是
# i<-match("city", names(chicago))
# j<-match("dptp", names(chicago))
# head(chicago[, -(i:j)])
# FILTER
chic.f <-filter(chicago, pm25tmean2>30)
chic.f <-filter(chicago, pm25tmean2>30 & tmpd>80)
head(chic.f)
# Arrange
chicago <- arrange(chicago, date) # 从小到大排列
chicago <- arrange(chicago, desc(date)) # 从大到小排列
head(chicago); tail(chicago)
# Rename
chicago <- rename(chicago, pm25=pm25mean2, dewpoint=dptp)
# MUTATE
chicago<-mutate(chicago, pm25detrend=pm25-mean(pm25, na.rm=TRUE))
# 创造新变量
#goup_by
#此组代码目的在于求出在天气冷热的不同条件下,空气污染的均值、最高值会否有差异
chicago<-mutate(chicago, tempat=factor(1*(tmpd>80),labels=c("cold","hot")))
hotcold<-group_by(chicago, tempcat)
summarize(hotcold, pm25=mean(pm25),o3=max(o3tmean2),no2=median(no2tmean2))
summarize(hotcold, pm25=mean(pm25, na.rm=TRUE),o3=max(o3tmean2),no2=median(no2tmean2))
# 忽略pm25中的missing value
# Summarize
#此组代码目的在于求出不同年份的数据有无差异
chicago<-mutate(chicago, year=as.POSIXlt(date)$year + 1900)
# 此方法可以简单地得到年份数据
years<-group_by(chicago, year)
summarize(years, pm25=mean(pm25, na.rm=TRUE),o3=max(o3tmean2),no2=median(no2tmean2))
# Pipeline Operation
chicago %>% mutate(month=as.POSIXlt(date)$mon + 1) %>% group_by(month) %>% summarize(pm25=mean(pm25, na.rm=TRUE),o3=max(o3tmean2),no2=median(no2tmean2))