自编码算法与稀疏性
分类:DL2013-07-19 20:18788人阅读评论(0)收藏举报
目录(?)[+]
转自ufldl,原文地址:http://deeplearning.stanford.edu/wiki/index.php/%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95%E4%B8%8E%E7%A8%80%E7%96%8F%E6%80%A7
目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合
自编码神经网络尝试学习一个
我们刚才的论述是基于隐藏神经元数量较小的假设。但是即使隐藏神经元的数量较大(可能比输入像素的个数还要多),我们仍然通过给自编码神经网络施加一些其他的限制条件来发现输入数据中的结构。具体来说,如果我们给隐藏神经元加入稀疏性限制,那么自编码神经网络即使在隐藏神经元数量较多的情况下仍然可以发现输入数据中一些有趣的结构。
稀疏性可以被简单地解释如下。如果当神经元的输出接近于1的时候我们认为它被激活,而输出接近于0的时候认为它被抑制,那么使得神经元大部分的时间都是被抑制的限制则被称作稀疏性限制。这里我们假设的神经元的激活函数是sigmoid函数。如果你使用tanh作为激活函数的话,当神经元输出为-1的时候,我们认为神经元是被抑制的。
注意到表示隐藏神经元的激活度,但是这一表示方法中并未明确指出哪一个输入带来了这一激活度。所以我们将使用来表示在给定输入为情况下,自编码神经网络隐藏神经元的激活度。 进一步,让
表示隐藏神经元的平均活跃度(在训练集上取平均)。我们可以近似的加入一条限制
为了实现这一限制,我们将会在我们的优化目标函数中加入一个额外的惩罚因子,而这一惩罚因子将惩罚那些和有显著不同的情况从而使得隐藏神经元的平均活跃度保持在较小范围内。惩罚因子的具体形式有很多种合理的选择,我们将会选择以下这一种:
这里,是隐藏层中隐藏神经元的数量,而索引依次代表隐藏层中的每一个神经元。如果你对相对熵(KL divergence)比较熟悉,这一惩罚因子实际上是基于它的。于是惩罚因子也可以被表示为
其中
这一惩罚因子有如下性质,当时,并且随着与之间的差异增大而单调递增。举例来说,在下图中,我们设定并且画出了相对熵值
我们可以看出,相对熵在时达到它的最小值0,而当靠近0或者1的时候,相对熵则变得非常大(其实是趋向于)。所以,最小化这一惩罚因子具有使得靠近的效果。 现在,我们的总体代价函数可以表示为
其中如之前所定义,而控制稀疏性惩罚因子的权重。项则也(间接地)取决于,因为它是隐藏神经元的平均激活度,而隐藏层神经元的激活度取决于。
为了对相对熵进行导数计算,我们可以使用一个易于实现的技巧,这只需要在你的程序中稍作改动即可。具体来说,前面在后向传播算法中计算第二层()更新的时候我们已经计算了
现在我们将其换成
就可以了。
有一个需要注意的地方就是我们需要知道来计算这一项更新。所以在计算任何神经元的后向传播之前,你需要对所有的训练样本计算一遍前向传播,从而获取平均激活度。如果你的训练样本可以小到被整个存到内存之中(对于编程作业来说,通常如此),你可以方便地在你所有的样本上计算前向传播并将得到的激活度存入内存并且计算平均激活度 。然后你就可以使用事先计算好的激活度来对所有的训练样本进行后向传播的计算。如果你的数据量太大,无法全部存入内存,你就可以扫过你的训练样本并计算一次前向传播,然后将获得的结果累积起来并计算平均激活度(当某一个前向传播的结果中的激活度被用于计算平均激活度之后就可以将此结果删除)。然后当你完成平均激活度的计算之后,你需要重新对每一个训练样本做一次前向传播从而可以对其进行后向传播的计算。对于后一种情况,你对每一个训练样本需要计算两次前向传播,所以在计算上的效率会稍低一些。
证明上面算法能达到梯度下降效果的完整推导过程不再本教程的范围之内。不过如果你想要使用经过以上修改的后向传播来实现自编码神经网络,那么你就会对目标函数
中英文对照
自编码算法 Autoencoders
稀疏性 Sparsity
神经网络 neural networks
监督学习 supervised learning
无监督学习 unsupervised learning
反向传播算法 backpropagation
隐藏神经元 hidden units
像素灰度值 the pixel intensity value
独立同分布 IID
主元分析 PCA
激活 active
抑制 inactive
激活函数 activation function
激活度 activation
平均活跃度 the average activation
稀疏性参数 sparsity parameter
惩罚因子 penalty term
相对熵 KL divergence
伯努利随机变量 Bernoulli random variable
总体代价函数 overall cost function
后向传播 backpropagation
前向传播 forward pass
梯度下降 gradient descent
目标函数 the objective
梯度验证方法 the derivative checking method
中文译者
周韬([email protected]),葛燕儒([email protected]),林锋([email protected]),余凯([email protected])
目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合
自编码神经网络尝试学习一个
我们刚才的论述是基于隐藏神经元数量较小的假设。但是即使隐藏神经元的数量较大(可能比输入像素的个数还要多),我们仍然通过给自编码神经网络施加一些其他的限制条件来发现输入数据中的结构。具体来说,如果我们给隐藏神经元加入稀疏性限制,那么自编码神经网络即使在隐藏神经元数量较多的情况下仍然可以发现输入数据中一些有趣的结构。
稀疏性可以被简单地解释如下。如果当神经元的输出接近于1的时候我们认为它被激活,而输出接近于0的时候认为它被抑制,那么使得神经元大部分的时间都是被抑制的限制则被称作稀疏性限制。这里我们假设的神经元的激活函数是sigmoid函数。如果你使用tanh作为激活函数的话,当神经元输出为-1的时候,我们认为神经元是被抑制的。
注意到
表示隐藏神经元
其中,
为了实现这一限制,我们将会在我们的优化目标函数中加入一个额外的惩罚因子,而这一惩罚因子将惩罚那些
这里,
其中
这一惩罚因子有如下性质,当
我们可以看出,相对熵在
其中
为了对相对熵进行导数计算,我们可以使用一个易于实现的技巧,这只需要在你的程序中稍作改动即可。具体来说,前面在后向传播算法中计算第二层(
现在我们将其换成
就可以了。
有一个需要注意的地方就是我们需要知道
证明上面算法能达到梯度下降效果的完整推导过程不再本教程的范围之内。不过如果你想要使用经过以上修改的后向传播来实现自编码神经网络,那么你就会对目标函数
中英文对照
自编码算法 Autoencoders
稀疏性 Sparsity
神经网络 neural networks
监督学习 supervised learning
无监督学习 unsupervised learning
反向传播算法 backpropagation
隐藏神经元 hidden units
像素灰度值 the pixel intensity value
独立同分布 IID
主元分析 PCA
激活 active
抑制 inactive
激活函数 activation function
激活度 activation
平均活跃度 the average activation
稀疏性参数 sparsity parameter
惩罚因子 penalty term
相对熵 KL divergence
伯努利随机变量 Bernoulli random variable
总体代价函数 overall cost function
后向传播 backpropagation
前向传播 forward pass
梯度下降 gradient descent
目标函数 the objective
梯度验证方法 the derivative checking method
中文译者
周韬([email protected]),葛燕儒([email protected]),林锋([email protected]),余凯([email protected])