- MySQL批量数据处理与事务管理
Mr数据杨
Python数据分析师mysql数据库
MySQL是一种广泛应用的关系型数据库管理系统,尤其在数据分析和业务逻辑处理方面具有重要地位。在数据量庞大的业务场景中,批量数据处理和事务管理是提高效率和保障数据一致性的重要手段。掌握高效的批量数据操作方法与事务管理技巧,不仅能够提升操作性能,还能有效降低数据处理的出错率。本教程将深入介绍MySQL数据分析中的批量数据处理与事务管理技巧,覆盖批量数据导入与更新、事务一致性与隔离级别等关键知识,帮助
- Java 大视界 -- Java 大数据在智慧交通自动驾驶仿真与测试数据处理中的应用(136)
青云交
大数据新视界Java大视界java大数据自动驾驶智慧交通仿真测试数据处理数据存储
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 深入了解 Kafka:应用场景、架构和GO代码示例
spiker_
kafka架构golang
深入了解Kafka:应用场景、架构和GO代码示例ApacheKafka是一个分布式流平台,用于实时数据处理和流处理。在这篇博客中,我们将介绍Kafka的主要应用场景、架构及主要组件,并展示如何使用Go语言操作Kafka,包括Kafka生产者、消费者的示例代码,以及如何通过KafkaConnectRESTAPI配置连接器。Kafka的主要应用场景实时数据流处理:Kafka用于处理实时数据流,如用户行
- Java对接DeepSeek全攻略:从0到1小白无忧
古龙飞扬
java开发语言ai
本文将带你从零开始,详细讲解如何在Java中对接DeepSeekAPI,适合小白用户。我们将从环境搭建、API调用、数据处理等方面逐步展开,并提供完整的代码示例。目录准备工作获取DeepSeekAPI密钥创建Java项目添加依赖使用Maven引入HTTP和JSON库编写代码创建请求和响应类发送HTTP请求处理API响应完整代码示例运行与测试常见问题与解决方案1.准备工作1.1获取DeepSeekA
- 地基Python常用的模块包及其用法
天天向上杰
python开发语言
Python标准库非常丰富,提供了大量内置模块,覆盖文件操作、数据处理、网络通信、系统交互等场景。以下是常用模块的详细说明及代码示例:1.文件与系统操作【os模块】处理操作系统相关功能(路径、目录、进程等)。importos#获取当前工作目录current_dir=os.getcwd()print("当前目录:",current_dir)#创建新目录os.makedirs("new_folder"
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- StarRocks x Demandbase ,助力北美 ABM 营销平台降本 90%!
营销clickhouse
开源无国界,在“StarRocks全球用户精选案例”专栏中,我们将介绍北美营销平台Demandbase的用户案例。Demandbase于2007年创立于美国加州旧金山,专注于AI驱动的ABM平台,助力B2B营销人员实现业务突破。通过将ClickHouse替换为StarRocks,Demandbase解决了性能与灵活性问题。新架构基于ApacheIceberg和StarRocks,显著提升了数据处理
- Java——Stream流的peek方法详解
Mcband
javapython开发语言
Java8中引入了StreamAPI,极大地简化了集合操作,使得开发者可以使用流的方式进行数据处理。Stream提供了一系列非常强大的操作方法,其中之一就是peek()方法。peek()是一个中间操作,它可以用来在操作流的过程中查看元素的处理状态。本文将详细介绍peek()方法的使用场景和原理,并配合代码示例帮助大家深入理解。一、peek()方法简介peek()方法的定义在java.util.st
- Python3 【项目实战】深度解析:赛跑成绩统计分析工具
李智 - 重庆
Python精讲精练-从入门到实战python案例学习编程技巧时间处理项目实战
Python3【项目实战】深度解析:赛跑成绩统计分析工具一、项目概述1.开发背景:田径比赛的成绩统计需要快速准确的计算选手成绩,传统人工计时和统计效率低且易出错。本工具通过程序化处理赛跑数据,自动计算各选手成绩及整体统计指标,主要应用于:学校运动会成绩实时统计田径锦标赛的自动化成绩公示运动员训练数据分析2.技术定位:时间数据处理与统计计算的典型案例字典数据结构的实践应用面向过程编程的教学范例二、项
- Oracle 数据库基础入门(七):触发器与事务的深度探究
Aphelios380
Oracleoracle数据库javasql
在Oracle数据库的生态系统中,触发器与事务是构建可靠、高效数据处理流程的关键组件。触发器能够自动响应特定数据库事件执行预设操作,而事务则确保一组数据库操作的原子性、一致性、隔离性和持久性。对于Java全栈开发者而言,深入理解并熟练运用触发器与事务,不仅能提升数据库操作的精细化程度,还能为构建稳健的企业级应用提供坚实支撑。让我们一同深入探索Oracle数据库中的触发器与事务。目录一、触发器(一)
- 如何用deepseek炒股
Real Man★
python机器学习人工智能
使用DeepSeek进行炒股的核心思路是利用其强大的数据处理和预测能力,辅助投资决策。以下是具体的应用方法和步骤:一、数据收集与处理获取市场数据股票数据:通过API(如Tushare、YahooFinance)获取历史股价、成交量、财务数据等。新闻与舆情:使用DeepSeek的NLP能力分析新闻、社交媒体和公告,提取市场情绪和事件影响。宏观经济数据:收集GDP、利率、通胀等数据,分析其对股市的影响
- R语言高效数据处理-自定义EXCEL数据排版
LEEBELOVED
r语言R语言高效处理数据excel批处理
注:以下代码均为实际数据处理中的笔记摘录,所以很零散1、自定义excel表数据输出格式、布局在实际数据处理中为了提升效率,将Excel报表交付给需求方时减少手动调整的环节很有必要#1.1设置表头格式header_style=0', style=sheet_style)#数据写入writeData(data_deal_main01,'data_deal_test1',data_de
- Hive SQL 精进系列: JSON_TUPLE 快速提取多键值
进一步有进一步的欢喜
HiveSQL精进系列hivesqlhadoop
目录一、引言二、json_tuple函数基础2.1基本语法参数解释返回值简单示例三、应用场景3.1数据提取与分析3.2数据集成与转换3.3复杂JSON数据处理四、json_tuple、get_json_object和from_json的对比4.1功能特点4.2语法和使用复杂度4.3性能表现4.4示例对比使用json_tuple使用get_json_object使用from_json五、使用注意事项
- Scala语言的硬件驱动
花韵婷
包罗万象golang开发语言后端
使用Scala语言进行硬件驱动开发引言随着计算机技术的快速发展,硬件设备的交互和控制在现代应用中显得尤为重要。大多数硬件驱动程序都用C或C++编写,但随着Scala语言的流行及其在数据处理和并发编程中的优势,越来越多的开发者开始探讨利用Scala进行硬件驱动开发的可能性。本文将深入探讨Scala语言在硬件驱动开发中的应用、优势、以及一些实际案例。什么是硬件驱动硬件驱动(DeviceDriver)是
- 架构模式之黑板模式
weixin_30518397
c/c++游戏数据库
一、定义黑板模式是一种常用的架构模式,应用中的多种不同数据处理逻辑相互影响和协同来完成数据分析处理。黑板模式允许多个消息读写者同时存在,消息的生产者和消费者完全分开。这就像一个黑板,任何一个教授(消息的生产者)都可以在其上书写消息,任何一个学生(消息的消费者)都可以从黑板上读取消息,两者在空间和时间上可以解耦,并且互不干扰。这种模式对于没有确定解决方案策略的问题是有用的。二、模式组成黑板模式由3个
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- MCU的工作原理:嵌入式系统的控制核心
绿算技术
MCU架构介绍单片机嵌入式硬件
MCU的工作原理可以概括为以下几个步骤:1.初始化上电后,MCU从Flash存储器中加载程序代码,并初始化外设和寄存器。2.任务执行根据程序逻辑,MCU执行数据处理、外设控制和通信等任务。通过中断系统实时响应外部事件。3.低功耗管理在空闲时,MCU进入低功耗模式,等待外部事件唤醒。4.结果输出通过GPIO、通信接口或模拟接口输出处理结果。MCU的架构:模块化与可扩展性MCU的架构设计注重模块化和可
- MCU详解:嵌入式系统的“智慧之心”
绿算技术
MCU架构介绍单片机嵌入式硬件
在现代电子设备中,MCU(MicrocontrollerUnit,微控制器)扮演着至关重要的角色。从智能家居到工业控制,从汽车电子到医疗设备,MCU以其小巧、低功耗和高集成度的特点,成为嵌入式系统的核心组件。由绿算技术带领着大家一起领略MCU的风采。MCU的功能:嵌入式系统的“全能选手”MCU是一种集成了处理器、存储器和外设接口的微型计算机系统,其核心功能包括:1.数据处理·算术与逻辑运算:MCU
- GPU的优势:并行计算的利器
绿算技术
GPU架构介绍科技gpu算力
GPU相较于CPU,在并行计算方面具有以下优势:强大的并行计算能力:GPU拥有成千上万个计算核心,能够同时执行大量的线程,非常适合处理数据并行性高的任务。高内存带宽:GPU配备了高带宽的内存子系统,能够快速地将数据传输到计算核心,满足大规模数据处理的需求。高效的线程调度:GPU采用硬件多线程技术,能够快速地切换线程上下文,最大限度地提高计算资源的利用率。灵活的编程模型:GPU提供了丰富的编程模型和
- 数据处理的革命性引擎
绿算技术
DPU架构介绍硬件工程科技缓存
随着数据量的爆炸式增长和计算需求的多样化,传统的CPU和GPU已经无法完全满足现代数据中心和高性能计算的需求。在这样的背景下,DPU(DataProcessingUnit,数据处理单元)应运而生。DPU是一种专为数据处理和网络加速设计的处理器,正在成为数据中心和云计算架构中的重要组成部分。接下来,由绿算技术与大家一起学习DPU有哪些功能、技术、原理等等内容。DPU的功能:数据处理的“全能选手”DP
- TDengine 使用教程:从入门到实践
遇见伯灵说
tdengine大数据时序数据库
TDengine是一款专为物联网(IoT)和大数据实时分析设计的时序数据库。它能够高效地处理海量的时序数据,并提供低延迟、高吞吐量的性能表现。在本文中,我们将带领大家从TDengine的安装、基本操作到一些高级功能,帮助你快速上手。1.TDengine简介TDengine是一个高效的时序数据存储解决方案,支持高并发写入和快速的实时分析。它适用于各种物联网应用场景,如传感器数据监控、日志数据处理等。
- 5分钟看懂数据中台的典型架构
isNotNullX
架构大数据数据管理
数据中台典型架构包括数据采集层、数据存储层、数据处理层、数据服务层和数据应用层。以下是数据中台的分层概述:一、数据采集层数据采集层作为数据中台的基础,主要负责获取各种数据源。这些数据源既可以源自公司内部的业务系统,像ERP、CRM系统等,也可以是外部的数据接口,例如第三方API、社交媒体数据接口,乃至物联网设备的数据。在这一层中,运用高效的数据采集工具和技术是核心要点,常见的工具涵盖ETL(提取、
- Python处理CSV文件的12个高效技巧
宇宙大豹发
python开发语言
今天,我们的Python之旅,目标是那片由逗号分隔的宝藏——CSV文件。别看它简单,掌握这些技巧,你的数据处理能力将直线上升,轻松驾驭千行万列的数据海洋。让我们一起,用Python的魔力,让CSV舞动起来吧!1.初次见面,你好,CSV!安装pandas,是这场冒险的起点。它,是Python数据分析的瑞士军刀。pipinstallpandas导入我们的英雄——pandas,并亲切地叫它pd。impo
- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- 一文教你学会Java Stream API 常用函数
小健学 Java
javapythonwindows
1.什么是Stream?Java8引入了StreamAPI,提供了一种声明式编程方式,使数据处理更加简洁、易读。Stream是一个数据流,它不存储数据,而是从数据源(如集合、数组等)获取数据并进行一系列操作。StreamAPI主要有两大类操作:中间操作(IntermediateOperations):返回新的Stream,可链式调用。终端操作(TerminalOperations):触发Strea
- 掌握大数据时代的心跳:实时数据处理的崛起
Echo_Wish
大数据大数据
掌握大数据时代的心跳:实时数据处理的崛起在大数据时代,我们每天都在生成海量的数据——从社交媒体上的点赞到物联网设备上传的传感器数据,数据无处不在。然而,仅仅存储这些数据已经无法满足现代业务的需求,“实时数据处理”已经从一项可选技术跃升为业务成功的关键所在。如何让数据在其生成的瞬间就能被分析、处理并驱动决策,这是我们今天要探讨的重点。为什么实时数据处理如此重要?想象一下这样两个场景:在线交易平台:当
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- 嵌入式面试真题——上半部与下半部
70000cc
嵌入式面试真题面试单片机linuxc语言嵌入式硬件
软中断运行在中断上下文,它是静态分配的,内核编译时就已经确定,不能动态注册或删除。这限制了它们的灵活性,但提高了性能。软中断可以在多个CPU上并行运行,包括同一种类型的软中断,所以需要处理好同步问题,比如使用自旋锁。不过,软中断的代码必须是可以重入的,这增加了实现的复杂性。常见的应用例子是网络和块设备的数据处理。Tasklet也是在中断上下文中运行,它是在软中断的基础上构建的。比如,tasklet
- 使用 Doris 和 Iceberg
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- 使用 Doris 和 LakeSoul
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_