- 2025三掌柜赠书活动第四期:AI原生应用开发提示工程原理与实战
三掌柜666
人工智能
目录前言提示工程的定义提示工程的重要性提示工程的基本原则关于《AI原生应用开发提示工程原理与实战》编辑推荐内容简介作者简介图书目录本书特色《AI原生应用开发提示工程原理与实战》内容提要结束语前言随着人工智能技术的飞速发展,AI原生应用开发已成为推动数字化转型的关键力量。AI原生应用不仅仅是传统应用的升级,而是从设计之初就深度整合了人工智能技术,以实现更智能、更高效的用户体验。提示工程(Prompt
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- DRG_DIP 2.0时代医院程序结构转型与数据结构优化研究
Allen_LVyingbo
数智化医院2025健康医疗sqlserver数据库架构
一、引言1.1DRG_DIP2.0改革背景与意义医保支付方式改革在医疗保障制度改革中占据着极为关键的地位,是推动医疗领域变革的核心力量。它犹如一把精准的手术刀,对医疗资源的合理分配、医疗服务质量的稳步提升以及医疗费用的有效控制起着决定性作用。在这一改革进程中,DRG(Diagnosis-RelatedGroups,疾病诊断相关分组)和DIP(Diagnosis-InterventionPacket
- 使用 AMD ROCm 容器入门:从基础镜像到定制解决方案
109702008
#ROCm人工智能
GettingstartedwithAMDROCmcontainers:frombaseimagestocustomsolutions—ROCmBlogs2025年1月16日,作者:MattElliott在从事技术工作超过二十年后,我亲身见证了容器化如何改变我们开发和部署应用程序的方式。容器将应用程序及其依赖项打包成标准单元,使软件在不同环境中具有良好的可移植性和一致性。当我们将这种容器化的力量与
- 基于 PyTorch 的深度学习模型开发实战
一ge科研小菜鸡
人工智能深度学习
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言深度学习已广泛应用于图像识别、自然语言处理、自动驾驶等领域,凭借其强大的特征学习能力,成为人工智能的核心技术之一。PyTorch作为当前流行的深度学习框架,提供了灵活的张量操作和动态计算图,便于模型的快速开发和调试。本教程将通过一个完整的深度学习模型开发流程,从数据预处理、模型构建、训练与优化、评估以及部署,帮助读者深入理解深度学习的关键技术
- yolo系列训练从本机挪到服务器中的报错:modulenotfounderror:numpy._core
m0_57663261
YOLO服务器运维
记录一下就是我本身在本机跑起来能训练了,把文件拷贝到服务器中环境跑的时候,出现了报错modulenotfounderror:numpy._core我上网搜的好些说numpy有问题需要重新下载因为本机和服务器已有环境中的numpy版本不同,所以出现此报错但或许不用!我借鉴了ModuleNotFoundError:Nomodulenamed‘numpy._core‘_modulenotfounderr
- 从零开始的Docker [ 5 ] --- ELK+Filebeat + kibana 容器化、Docker compose
Nekoosu
从零开始的Dockerdockerlinuxdocker-composeelk容器化
文章目录容器技术Docker应用一、ELK容器化1.获取镜像2.启动二、Logstash容器化1.配置文件2.正常启动三、logstash配置1.Log4j2文件的方式配置2.LogingAPI的方式配置a.查看日志配置信息b.更新日志级别c.重置日志级别3.慢日志a.配置b.启用慢日志四、Filebeat容器化1.获取镜像2.设置配置文件3.运行容器a.制作日志文件b.使用自定义的配置文件运行容
- 利用Python爬虫获取API接口:探索数据的力量
不会玩技术的技术girl
Pythonpython爬虫开发语言
引言在当今数字化时代,数据已成为企业、研究机构和个人获取信息、洞察趋势和做出决策的重要资源。Python爬虫作为一种高效的数据采集工具,能够帮助我们自动化地从互联网上获取大量的数据。而API接口作为数据获取的重要途径之一,为我们提供了一种更直接、更高效的数据访问方式。本文将详细介绍如何利用Python爬虫获取API接口,并对获取到的数据进行分析和应用,从而充分发挥数据的价值。一、API接口概述(一
- 利用MMDetection进行模型微调和权重初始化
MickeyCV
目标检测深度学习目标检测计算机视觉python
目录模型微调修改第一处:更少的训练回合Epoch修改第二处:更小的学习率LearningRate修改第三处:使用预训练模型权重初始化实际使用案例init_cfg的具体使用规则初始化器配置汇总本文基于MMDetection官方文档,对模型微调和权重初始化进行第三方讲解。模型微调在COCO数据集上预训练的检测器可以作为其他数据集优质的预训练模型。微调超参数与默认的训练策略不同。它通常需要更小的学习率和
- WeCube插件开发,你怎么看?
homie Xie
gitgithub开源
关于Wecube插件体系中前端工程方面的看法背景插件的前端工程里要做哪些事情想法背景大家都知道在WeCube2.0中我们把绝大部分功能都抽象成一个个的插件,在这样的一个体系下,各个插件独立开发,在使用的时候自由灵活组合,WeCube的使用者可以根据自身需求和喜好来选择他想要的插件来解决他的问题。当然,这一切的前提是我们有一个庞大的插件市场来供用户选择,而建设这样一个插件市场,我们需要依赖社区的力量
- 0基础跟德姆(dom)一起学AI 自然语言处理22-fasttext文本分类
跟德姆(dom)一起学AI
人工智能自然语言处理分类python深度学习transformer
1文本分类介绍1.1文本分类概念文本分类的是将文档(例如电子邮件,帖子,文本消息,产品评论等)分配给一个或多个类别.当今文本分类的实现多是使用机器学习方法从训练数据中提取分类规则以进行分类,因此构建文本分类器需要带标签的数据.1.2文本分类种类二分类:文本被分类两个类别中,往往这两个类别是对立面,比如:判断一句评论是好评还是差评.单标签多分类:文本被分入到多个类别中,且每条文本只能属于某一个类别(
- 2025年美赛数学建模 Problem C: Models for Olympic Medal Tables 问题 C:奥运奖牌榜模型 详细解析和代码(持续更新中,2025美赛)
2025年数学建模美赛
2025年美赛MCM/ICM数学建模开发语言2025年数学建模美赛2025美赛C题奥运奖牌榜模型
目录Python代码MATLAB代码2.模型框架2.1回归分析模型2.2集成学习方法2.3时间序列预测2.4模型不确定性估计3.数据处理与模型训练4.预测2028年奥运奖牌5.预测区间和不确定性6.哪些国家可能提高或下降?7.尚未获得奖牌的国家的预测8.奥运项目与奖牌数的关系2.教练与国家奖牌数的关联2.1定义“伟大教练”效应2.2数据分析方法2.3分析结果3.选择三个国家并确定应投资的运动项目3
- 第八章:AI大模型的未来发展趋势8.3 新兴应用领域8.3.2 生成对抗网络的应用
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍1.背景介绍生成对抗网络(GenerativeAdversarialNetworks,GANs)是一种深度学习技术,由伊玛·古德姆(IanGoodfellow)于2014年提出。GANs由两个相互对抗的神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器生成假数据,判别器试图区分假数据和真实数据。这种对抗训练方法使得GANs能够学习数据分布并生成高质
- 顶刊论文:一种用于病理学的多模态全切片基础模型 TITAN
思陌Ai算法定制
人工智能机器学习ai深度学习
“MultimodalWholeSlideFoundationModelforPathology”提出了一种用于病理学的多模态全切片基础模型TITAN,通过在大量组织切片图像(WSIs)上的自监督学习和视觉语言对齐预训练,TITAN能生成强大的通用切片表示,在多种临床任务中表现优异,为病理学研究和临床诊断提供了有力工具。1.**研究背景**-计算病理学中基础模型发展迅速,但将基于组织病理图像感兴趣
- GEE训练教程——基于Landsat C02数据的多指数计算和批量下载
此星光明
GEE教程训练前端数据库javascriptgeeLandsat指数下载
目录简介指数介绍代码解释代码结果简介GEE训练教程——基于LandsatC02数据的多指数计算和批量下载指数介绍NDVI:归一化差异植被指数(NormalizedDifferenceVegetationIndex)是通过比较近红外波段(NIR)和红波段(Red)的反射率来评估植被状况的指数。计算公式为:(NIR-Red)/(NIR+Red)。NDVI值范围从-1到1,数值越高表示植被越茂盛。EVI
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_1309399183
无人机类YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 人工智能研究报告:技术、应用与未来趋势洞察
戒了9
人工智能学习方法
一、引言1.1研究背景在当今科技飞速发展的时代,人工智能(ArtificialIntelligence,简称AI)已成为最为关键的技术领域之一。它犹如一股强大的变革力量,正深刻地重塑着各行业的发展格局,对社会的各个层面产生着深远的影响。从历史发展进程来看,人工智能的概念自20世纪50年代被提出后,历经了多个发展阶段。早期,受限于计算能力和算法的不完善,人工智能的发展较为缓慢,更多地停留在理论研究和
- 对话小羊驼vicuna
Always_Shine
大模型人工智能深度学习大模型自然语言处理
文章目录1.gpu租用2.公网网盘存储实例/数据3.登录实例4.预训练模型下载5.llama、alpaca、vicuna的前世今生6.对话Vicuna(1)llama-2-7b-hf(2)vicuna-7b-delta-v0(3)vicuna-7b-v0(4)执行推理1.gpu租用阿里云(AlibabaCloud)https://www.aliyun.com腾讯云(TencentCloud)htt
- 大语言模型LLM基础扫盲速通版
SmallerFL
NLP&机器学习语言模型人工智能自然语言处理llmchatgpt
文章目录1.什么是LLM?2.LLM如何工作?3.LLM开发的关键里程碑4.训练可用LLM模型的完整流程5.LLM具备的能力6.领先的LLM模型包含哪些?7.建议从头开始训练LLM吗?8.LLM的训练数据源包含哪些?9.其他关于LLM的常见问题9.1Transformer在LLM中有何意义?9.2在LLM中,微调(fine-tuning)是什么?9.3模型大小如何影响LLM的性能?9.4LLM能生
- Firefly-LLaMA2-Chinese - 开源中文LLaMA2大模型
伊织产研
Firefly-LLaMA2LLaMA-2
文章目录关于模型列表&数据列表训练细节增量预训练&指令微调数据格式&数据处理逻辑增量预训练指令微调模型推理权重合并模型推理部署关于github:https://github.com/yangjianxin1/Firefly-LLaMA2-Chinese本项目与Firefly一脉相承,专注于低资源增量预训练,既支持对Baichuan2、Qwen、InternLM等原生中文模型进行增量预训练,也可对L
- ML.NET速览
aixing8475
人工智能操作系统runtime
什么是ML.NET?ML.NET是由微软创建,为.NET开发者准备的开源机器学习框架。它是跨平台的,可以在macOS,Linux及Windows上运行。机器学习管道ML.NET通过管道(pipeline)方式组合机器学习过程。整个管道分为以下四个部分:LoadData加载数据TransformData转换数据ChooseAlgorithm选择算法TrainModel训练模型示例建立一个控制台项目。
- 2025 年,人工智能的发展还是「算力至上」吗?
开心的AI频道
人工智能
算力仍是基础,但不再是唯一关键,从算力至上到多维发展算力:不可或缺的基石从市场数据来看,全球智能算力需求呈现爆发式增长,预计到2025年市场规模将达103.4亿美元,年复合增长率高达17.7%。这一增长的背后,显示出AI应用从“小打小闹”走向真实落地。以大模型为例,训练一个模型需要调用约3万个AI芯片,这种规模的算力需求使得算力基础设施建设成为各国竞相布局的战略重点。工信部等六部门联合发布的《算力
- 代码随想录算法训练营第十五天| 二叉树3
Rachela_z
算法
110.平衡二叉树(优先掌握递归)再一次涉及到,什么是高度,什么是深度,可以巩固一下。题目链接/文章讲解/视频讲解:代码随想录状态:要辨别新增函数的位置,self的用法二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数,从上往下数二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数,从下往上数#Definitionforabinarytreenode.#classTreeNode:
- 【从零开始的LeetCode-算法】3285. 找到稳定山的下标
九圣残炎
java算法leetcode
有n座山排成一列,每座山都有一个高度。给你一个整数数组height,其中height[i]表示第i座山的高度,再给你一个整数threshold。对于下标不为0的一座山,如果它左侧相邻的山的高度严格大于threshold,那么我们称它是稳定的。我们定义下标为0的山不是稳定的。请你返回一个数组,包含所有稳定山的下标,你可以以任意顺序返回下标数组。示例1:输入:height=[1,2,3,4,5],th
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- python 语音识别
柚梓sir
神经网络语音识别人工智能
在python中训练一个语音识别系统主要需要以下几个步骤:-语料库准备-数据预处理-特征提取-训练模型第一部分:语料库的准备什么是语料库?语料库长什么样?语料库由两部分组成,第一部分是语音,第二部分是玉莹的标注,通常为字符形式。本次项目中,我们选用的语料库是THCHS-30,这个语料库是在安静的办公室环境下,由录音人员用普通话朗读新闻的语音作为数据,总时长超过30个小时。我们利用语料库,构造转换字
- c++基础训练plus(二)
kkxdt
c++开发语言
Background从前有个荣光的王国,小A是其中的国王,他认为一个国家除了法律外还要有一些约定俗成的规则,所以今天他要赐以其规则。Description小A制定了一些规则,每条规则有一个代号,代号为不超过10的9次方的非负整数。小A的国家有n位居民,每位居民每天会且仅会遵守1条规则。小A记录了m天里每天每位居民遵守的规则代号。现在小A想要考察代号为k的规则是否符合民意,具体考察方法如下:如果在某
- 代码随想录算法训练营第三十七天-动态规划-完全背包-理论基础
taoyong001
算法动态规划c++leetcode
完全背包与01背包根本区别就是物品的数量完全背包,物品的数量是无限的,可以任意取多个01背包物品的数量则只有一个遍历顺序01背包的一维滚动数组必须要从后向前遍历,这是防止一个物品被多次加入背包中而完全背包就是要多次加入物品,所以遍历自然而然就变成正序遍历了for(intj=weight[i];j<=capacityOfCurrentBag;++j)因为是二层遍历,且这两层遍历可以交换可以交换的本质
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- 代码随想录算法训练营第三十六天-动态规划-474.一和零
taoyong001
算法动态规划c++leetcode
背包问题本身就已经够反思维的了,竟然物品会有两个维度的情况,这是闹哪样?题目要求是最大子集的个数题目中的mmm和nnn可以类比为容器,要装潢这个容器,最多要多少个元素的个数,就是结果,这个容器最多有mmm个0,nnn个1这个容器相当于一个背包,这个背包是有两个维度,最多有mmm个0,nnn个1,装潢这个背包最多需要多少个物品给出的数据集就是物品这是一道01背包问题动规五部曲这里要使用一个二维的动规
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa