java数据结构和算法------图

  1 package iYou.neugle.graph;
  2 
  3 import java.util.LinkedList;
  4 import java.util.Queue;
  5 import java.util.Stack;
  6 
  7 public class MyGraph1 {
  8     private MatrixGraph graph;
  9 
 10     public MatrixGraph getGraph() {
 11         return graph;
 12     }
 13 
 14     public void setGraph(MatrixGraph graph) {
 15         this.graph = graph;
 16     }
 17 
 18     // 使用邻接矩阵作为存储单元
 19     class MatrixGraph {
 20         public int maxNum = 10;
 21         public int[][] edge;
 22         public boolean[] isVisited;
 23         public int type;// 0表示无向图,1表示有向图
 24 
 25         public MatrixGraph(int maxNum, int type) {
 26             this.maxNum = maxNum;
 27             this.type = type;
 28             this.edge = new int[this.maxNum][this.maxNum];
 29             this.isVisited = new boolean[this.maxNum];
 30         }
 31     }
 32 
 33     public MyGraph1(int maxNum, int type) {
 34         this.graph = new MatrixGraph(maxNum, type);
 35     }
 36 
 37     // 创建邻接矩阵 (带权值)
 38     public void CreateMaxtrixGraph(int i1, int i2, int w) {
 39         this.graph.edge[i1 - 1][i2 - 1] = w;
 40         // 如果为无向图 则对称位置也要置为w
 41         if (this.graph.type == 0) {
 42             this.graph.edge[i2 - 1][i1 - 1] = w;
 43         }
 44     }
 45 
 46     // 创建邻接矩阵 (不带权值)
 47     public void CreateMaxtrixGraph(int i1, int i2) {
 48         this.graph.edge[i1 - 1][i2 - 1] = 1;
 49         // 如果为无向图 则对称位置也要置为1
 50         if (this.graph.type == 0) {
 51             this.graph.edge[i2 - 1][i1 - 1] = 1;
 52         }
 53     }
 54 
 55     // 遍历邻接矩阵
 56     public void OutPutMaxtrixGraph() {
 57         int[][] edge = this.graph.edge;
 58         for (int i = 0; i < edge.length; i++) {
 59             if (i == 0) {
 60                 System.out.print("  ");
 61                 for (int j = 0; j < edge[i].length; j++) {
 62                     System.out.print((j + 1) + " ");
 63                 }
 64                 System.out.println();
 65             }
 66             System.out.print(i + 1 + " ");
 67             for (int j = 0; j < edge[i].length; j++) {
 68                 System.out.print(edge[i][j] + " ");
 69             }
 70             System.out.println();
 71         }
 72     }
 73 
 74     // 深度优先遍历
 75     public void DFSTraverse() {
 76         // 初始化
 77         for (int i = 0; i < this.graph.isVisited.length; i++) {
 78             this.graph.isVisited[i] = false;
 79         }
 80         // 采用栈的数据结构
 81         Stack<Integer> stack = new Stack<>();
 82         System.out.print("深度优先遍历的结果为: ");
 83         for (int i = 0; i < this.graph.edge.length; i++) {
 84             if (!this.graph.isVisited[i]) {
 85                 stack.push(i);
 86                 while (!stack.isEmpty()) {
 87                     int n = stack.pop();
 88                     if (!this.graph.isVisited[n]) {
 89                         System.out.print(n + 1 + " ");
 90                     } else {
 91                         continue;
 92                     }
 93                     this.graph.isVisited[n] = true;
 94                     for (int j = this.graph.edge[n].length - 1; j >= 0; j--) {
 95                         if (this.graph.edge[n][j] == 1) {
 96                             stack.push(j);
 97                         }
 98                     }
 99                 }
100             }
101         }
102         System.out.println();
103     }
104 
105     // 广度优先遍历
106     public void BFSTraverse() {
107         // 初始化
108         for (int i = 0; i < this.graph.isVisited.length; i++) {
109             this.graph.isVisited[i] = false;
110         }
111         // 采用队列的数据结构
112         Queue<Integer> queue = new LinkedList<>();
113         System.out.print("广度优先遍历的结果为: ");
114         for (int i = 0; i < this.graph.edge.length; i++) {
115             if (!this.graph.isVisited[i]) {
116                 queue.add(i);
117                 while (!queue.isEmpty()) {
118                     int n = queue.remove();
119                     if (!this.graph.isVisited[n]) {
120                         System.out.print(n + 1 + " ");
121                     } else {
122                         continue;
123                     }
124                     this.graph.isVisited[n] = true;
125                     for (int j = 0; j < this.graph.edge[n].length; j++) {
126                         if (this.graph.edge[n][j] == 1) {
127                             queue.add(j);
128                         }
129                     }
130                 }
131             }
132         }
133         System.out.println();
134     }
135 
136     // 主函数
137     public static void main(String[] args) {
138         MyGraph1 myGraph = new MyGraph1(5, 0);
139         myGraph.CreateMaxtrixGraph(1, 2);
140         myGraph.CreateMaxtrixGraph(1, 3);
141         myGraph.CreateMaxtrixGraph(1, 5);
142         myGraph.CreateMaxtrixGraph(2, 4);
143         myGraph.CreateMaxtrixGraph(3, 5);
144         myGraph.CreateMaxtrixGraph(4, 5);
145         myGraph.OutPutMaxtrixGraph();
146         myGraph.DFSTraverse();
147         myGraph.BFSTraverse();
148     }
149 }
  1 2 3 4 5 
1 0 1 1 0 1 
2 1 0 0 1 0 
3 1 0 0 0 1 
4 0 1 0 0 1 
5 1 0 1 1 0 
深度优先遍历的结果为: 1 2 4 5 3 
广度优先遍历的结果为: 1 2 3 5 4 

你可能感兴趣的:(java)