基础排序算法 and extended

简介

基础的数据结构一般就包括,链表,队列,二叉树图,基础的数据结构对象,再就是比较基础的算法,查找排序,刚开始学算法宇数据结构的小伙伴都会接触到这几种类型,在大学的时候,因为当时是用的C++进行的编程,对几种简单的排序算法比较熟悉,简单的说分为4种,选择排序,冒泡排序,归并排序,希尔排序,这四种可以说是比较常规的四种排序算法,其中冒泡排序跟归并排序算法是稳定的,算法的时间复杂度分别是O(),O(),O(),O(),跟冒泡排序算法相似的,还有个就是快速排序,跟冒泡排序类似,都属属于交换元素排序。下面废话不说,直接贴python实现的代码,个人最近在转python,所以什么还是都是用python撸一把吧。

选择排序

def select_sort(origin_items, comp=lambda x, y: x < y):#不得不说lambda函数是真的好用啊,跟R里面的apply函数族有一拼了
    """简单选择排序"""
    items = origin_items[:]
    for i in range(len(items) - 1):
        min_index = i
        for j in range(i + 1, len(items)):
            if comp(items[j], items[min_index]):#调用定义的lambda函数
                min_index = j
        items[i], items[min_index] = items[min_index], items[i]
    return items
#简单的总结一下,其实选择排序,不断将小的元素向前移动,大的元素向后移,慢慢成为一个有序的序列

冒泡排序

def bubble_sort(origin_items, comp=lambda x, y: x > y):
    """高质量冒泡排序(搅拌排序)"""
    items = origin_items[:]
    for i in range(len(items) - 1):
        swapped = False
        for j in range(i, len(items) - 1 - i):
            if comp(items[j], items[j + 1]):
                items[j], items[j + 1] = items[j + 1], items[j]
                swapped = True
        if swapped:
            swapped = False
            for j in range(len(items) - 2 - i, i, -1):
                if comp(items[j - 1], items[j]):
                    items[j], items[j - 1] = items[j - 1], items[j]
                    swapped = True
        if not swapped:
            break
    return items
####冒泡排序算法跟选择排序很类似,正常的是一次只确定一个最终的位置,一般是确定最大的元素的在排序种的位置,这个是修改之后的冒泡排序算法,主要是多了一步将最小元素排序的操作,也就是一次循环到结尾,再回来的时候将最小的排完,然后以此类推,排序的范围越来越小,提高了排序的效率,也叫做鸡尾酒排序,下面是示意图。
基础排序算法 and extended_第1张图片
搅拌排序示意图

希尔排序算法

希尔排序是小规模数据排序的最优选择,算法的核心思想就是对插入排序的封装,逐渐减小增量形成新的数组进行插入排序。希尔排序跟前面的白话的排序算法不是很相似,他主要是将数据按步长进行分组,然后对每组中的数,按简单插入排序,然后排序结束之后再将数进行组合,再组合结束后形成新的顺序,然后再将数按新的步长进行排序,随着增量的减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

对于步长的选择如下
在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2...1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。举个简单的例子如下


基础排序算法 and extended_第2张图片
[例子来源https://www.cnblogs.com/chengxiao/p/6104371.html]

对直接插入排序还不懂的小伙伴需要复习下了,这个是很简单的,说白了就是将无序的队列中的元素插入到有序的队列中
下面是实现的代码

def shell_sort(A):
    N = len(A)
    increment = N//2

    while increment > 0:
        i = increment

        while i < N:
            j = i - increment
            tmp = A[i]

            while j >= 0 and A[j] > tmp:
                A[j + increment] = A[j]
                j -= increment

            A[j + increment] = tmp
            i += 1

        increment //= 2

    return None

归并排序

归并排序算法其实是一种比较经典的分治法排序的算法,将一个大的序列不断分成小的了序列,然后将小的序列进行排序,排完序之后再将这些小的序列进行合并,其实主要是分为两个简单的步骤,第一个是分,第二个是合,个人觉得再合部分可能有点歧义,下面补充一个简单的例子来进行展示。


基础排序算法 and extended_第3张图片
[例子来源https://www.cnblogs.com/chengxiao/p/6194356.html]

下面直接上代码

def merge_sort(items, comp=lambda x, y: x <= y):
    """归并排序(分治法)"""
    if len(items) < 2:
        return items[:]
    mid = len(items) // 2
    left = merge_sort(items[:mid], comp)
    right = merge_sort(items[mid:], comp)
    return merge(left, right, comp)

def merge(items1, items2, comp):
    """合并(将两个有序的列表合并成一个有序的列表)"""
    items = []
    index, index2 = 0, 0
    while index1 < len(items1) and index2 < len(items2):
        if comp(items1[index1], items2[index2]):
            items.append(items1[index1])
            index1 += 1
        else:
            items.append(items2[index2])
            index2 += 1
    items += items1[index1:]
    items += items2[index2:]
    return items

拓展内容

现在是大数据的时代,那么如何对海量的大数据进行排序呢?其实我觉的 Hadoop就是来解决这种问题,他的Mapreduce策列,可以很好的实现大数据的分布与计算,但这里不进行Hadoop的介绍,这里主要是介绍一些传统的方法。
1.首先比较传统的思想肯定是分割,也就是分治法,大的数据集不断分成小的数据,然后将小的数据进行排序,最后形成有序的数据。特别注意,对数据的分割要是有序的。再就是如果是进一步提高性能的话,可以再I/O的过程进行优化,减少I/O的过程,将多个段进行合并之后在进行I/O操作,还有就是:
可以使用并发的操作:如多磁盘(并发I/O提高)、多线程、使用异步I/O、使用多台主机集群计算等。(其实这些再Hadoop里面可以完全都顾及了,Spark实现map,Hadoop实现对资源的整合与利用)
2.字典树方法,其数据结构如下

String name; // 结点的字符名称
    int fre; // 单词的词频
    boolean end; // 是否是单词结尾
    boolean root; // 是否是根结点
    Node[] children; // 子节点信息
    boolean visited; // 是否已经遍历过了
    int minLength; // 通过该节点的最小的数字长度
    int prefixCount = 0; // 有多少单词通过这个节点,即节点字符出现的次数
    Node parent; // 当前节点的父节点

具体的字典树的操作不在这里详细的赘述。
下次更新下Hadoop里面的Mapreduce的原理过程。

你可能感兴趣的:(基础排序算法 and extended)