Advanced hive

hdfs

CREATE TABLE t1(name string,id int) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ';
LOAD DATA LOCAL INPATH '/Users/***/Desktop/test.txt' INTO TABLE t1;

然后在hdfs上查看 port 50070 或dfs -ls /user/username/hive;

java

package demoudf;

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */

/**
 *
 * @author wyq
 */

import java.util.Date;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
import java.text.DateFormat;

public class UnixTodate extends UDF{
  public Text evaluate(Text text){
     if (text ==null) return null;
     long timestamp = Long.parseLong(text.toString());
     System.out.println(text);
     System.out.println(timestamp);
     return new Text(toDate(timestamp));         
}
  private String toDate(long timestamp){
    Date date = new Date(timestamp*1000);
    System.out.println(date);
    return DateFormat.getInstance().format(date).toString();
    }
  
//   public static void main(String[] args){
//       UnixTodate u = new UnixTodate();
//       Text t = u.evaluate(new Text("1386023259550"));
//       System.out.println(t.toString());
//   }

}
jar cvf demoudf.jar ///.java
ADD jar /Users/wyq/Desktop/demoudf.jar;
create temporary function userdate as 'demoudf.UnixTodate';
create table test(id string, unixtime string) 
row format delimited fields terminated by ',';
load data local inpath '/Users/wyq/Desktop/udf_test.txt' into table test;
select * from test;
select id,userdate(unixtime) from test;

cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

python

txt文件
jeffgeng click:13,uid:15

#!/usr/bin/python  
import sys  
reload(sys)  
sys.setdefaultencoding('utf8')  
def quchong(desc):  
    a=desc.split('-')  
    return '-'.join(set(a))  
while True:  
        line = sys.stdin.readline()  
        if line == "":  
                break  
        line = line.rstrip('\n')  
        # your process code here  
        parts = line.split('\t')  
        parts[2]=quchong(parts[2])  
        print "\t".join(parts)  
CREATE TABLE t3 (foo STRING, bar MAP)  
row format delimited fields terminated by '\t' 
COLLECTION ITEMS TERMINATED BY ','  
MAP KEYS TERMINATED BY ':'  STORED AS TEXTFILE;  

SELECT TRANSFORM ()
USING 'python '
AS ()
FROM ;

补充

  • Making Multiple Passes over the Same Data

Hive has a special syntax for producing multiple aggregations from a single pass through a source of data, rather than rescanning it for each aggregation. This change can save considerable processing time for large input data sets.

因此如下方式更加高效,并且可开启并行:

FROM pv_users
    INSERT OVERWRITE TABLE pv_gender_sum
        SELECT pv_users.gender, count_distinct(pv_users.userid)
        GROUP BY pv_users.gender

    INSERT OVERWRITE DIRECTORY '/user/data/tmp/pv_age_sum'
        SELECT pv_users.age, count_distinct(pv_users.userid)
        GROUP BY pv_users.age;
set hive.exec.parallel=true;   //打开任务并行执行
set hive.exec.parallel.thread.number=16; //同一个sql允许最大并行度,默认为8。
  • 日期处理
    查看N天前的日期:
select from_unixtime(unix_timestamp('20111102','yyyyMMdd') - N*86400,'yyyyMMdd') from t_lxw_test1 limit 1;  

获取两个日期之间的天数/秒数/分钟数等等:

select ( unix_timestamp('2011-11-02','yyyy-MM-dd')-unix_timestamp('2011-11-01','yyyy-MM-dd') ) / 86400  from t_lxw_test limit 1; 
  • left outer join
--query 1
select count(id) from  
(select id  from   a  left outer join   b  
on a.id=b.id and  b.date='2017-10-27'    
where to_date(a.adate) >= '2017-10-27'   and a.date='2017-07-24'  
) a 
--query 2
select count(id) from  
(select id  from   a  left outer join   b  
on a.id=b.id and  b.date='2017-10-27'  and a.date='2017-07-24'  
where to_date(a.adate) >= '2017-10-27'  
) a 

区别?where 后面跟的是过滤条件,query 1 中的a.date='2017-07-24', 在table scan之前就会Partition Pruner 过滤分区,所以只有'2017-07-24'下的数据会和b进行join。
而query 2中会读入所有partition下的数据,再和b join,并且根据join的关联条件只有a.date='2017-07-24' 的时候才会真正执行join,其余情况下又由于是left outer join, 右面会留NULL

  • 配置文件

  • 正则
    java中的正则匹配即可:

name rlike '^[\\u4e00-\\u9fa5]+$'
select mobile from phone where mobile rlike '^\\d+$' ;  
  • 控制hive任务中的map数和reduce数

  • SQLWindowing

  • hdfs目录创建hive表,指定分区

CREATE EXTERNAL TABLE if not exists push_log(
     hostid STRING, dayid STRING
     plmn STRING)
 COMMENT ' log table'
 PARTITIONED BY (hostid STRING, dayid STRING) 
 ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001'
 STORED AS TEXTFILE
 LOCATION '/user/data/push';
alter table push_log add partition(hostid='$hostid', dayid='$dayid') location '/user/data/push/$hostid/$dayid';

testtext 数据wer 46 weree 78 wer 89 rr 89

create table d_part(name string)  partitioned by(value string) row format delimited fields terminated by '\t'  lines terminated by '\n' stored as textfile;

set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrick;

insert overwrite table d_part partition(value) select name,addr as value from testtext;

select * from d_part;
show partitions d_part;
hive> create table d_part2(
    > name string
    > )
    > partitioned by(value string,dt string)
    > row format delimited fields terminated by '\t' 
    > lines terminated by '\n'
    > stored as textfile;
hive> insert overwrite table d_part2 partition(value,dt)
    > select 'test' as name,  
    > addr as value,
    > name as dt
    > from testtext;
show partitions d_part2;
  • hive中转义特殊字符
  • schema tool
    https://www.cloudera.com/documentation/enterprise/5-4-x/topics/cdh_ig_hive_schema_tool.html

你可能感兴趣的:(Advanced hive)