import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.linear_model import LinearRegression,Ridge,Lasso

from sklearn.neighbors import KNeighborsRegressor

import sklearn.datasets as datasets

face = datasets.load_iris()

X = face['data']
y = face['target']

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(fit_intercept=False)

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)

lr.fit(X_train,y_train)

y_ = lr.predict(X_test)

y_
array([0, 0, 2, 0, 1, 2, 1, 0, 0, 0, 1, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 2, 2,
0, 2, 0, 1, 0, 2, 0])

y_test
array([0, 0, 2, 0, 1, 2, 1, 0, 0, 0, 1, 2, 0, 1, 1, 1, 0, 2, 2, 0, 2, 2, 1,
0, 2, 0, 1, 0, 2, 0])

lr.score(X_test,y_test)