跟随失败者走向胜利! (二) MA线回归策略(OLMAR)

跟随失败者走向胜利! (二) MA线回归策略(OLMAR)

上周撸主发了一篇关于组合优化的帖子,这次我们来看看Follow the Loser思想下的另一种策略:移动平均线回归策略OnLine Moving Average Reversion (OLMAR)。关于Follow the Loser思想及上次写的Anti Correlation策略请进传送门Anti Correlation方法。

Li bin papei简介;

Online portfolio selection is a fundamental problem in computational finance, which has been extensively studied across several research communities, including finance, statistics, artificial intelligence, machine learning, and data mining, etc. This article aims to provide a comprehensive survey and a structural understanding of published online portfolio selection techniques. From an online machine learning perspective, we first formulate online portfolio selection as a sequential decision problem, and then survey a variety of state-of-the-art approaches, which are grouped into several major categories, including benchmarks, "Follow-the-Winner" approaches, "Follow-the-Loser" approaches, "Pattern-Matching" based approaches, and "Meta-Learning Algorithms".

OLMAR的核心想法,顾名思义,就是价格会回到移动平均线(MA)。这表明,股票价格在某一个时间段内的MA值是下一期价格的期望值,或者说,最好的预测值。如果我们采用简单的移动平均算法,有:

那么下一期的价格估计值为:

ω是时间窗,后面那个奇怪的圈圈中间一个点表示矩阵内的元素相乘。

有了对下一期价格的预测,下一期的组合分配比例bt+1是下面式子的解:

可见这一策略要求在调整幅度最小的情况下,保证新组合在预估价格下的值不低于某个敏感系数ε。

在我的策略中,我随机选取了六支股票:'青岛啤酒','浦发银行','张江高科','长江电力','安琪酵母','白云机场'作为组合成员股票,设置敏感系数ε=0.2。为了展现这个组合优化策略和简单的Buy and Hold策略之间的差异性,我把基准收益设置成浦发银行的收益。(事实上如果用默认的大盘收益作为基准差异会更加明显)

参考文献:Online Portfolio Selection: A Survey by Bin Li and Steven C. H. Hoi。

废话不多说了,大家请看我的策略。


米筐量化交易平台:http://www.ricequant.com

量化炒股QQ群:484490463  群内大神每日在线讲解代码,用Python自动赚钱!

你可能感兴趣的:(跟随失败者走向胜利! (二) MA线回归策略(OLMAR))