Handler机制是Android中相当经典的异步消息机制,在Android发展的历史长河中扮演着很重要的角色,无论是我们直接面对的应用层还是FrameWork层,使用的场景还是相当的多。
很多朋友面试时问到了这里,一时被问懵。从哪里跌倒就从哪里爬起来,带大家一步一步深入Handler源码,就不信还拿不下面试官!
BATJ、字节跳动面试专题,算法专题,高端技术专题,混合开发专题,java面试专题,Android,Java小知识,到性能优化.线程.View.OpenCV.NDK等已经上传到了的我的GitHub
大家点击我的GitHub地址:https://github.com/Meng997998/AndroidJX点下star一起学习
分析源码一探究竟。
从一个常见的用法说起:
private Button mBtnTest;
private Handler mTestHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
switch (msg.what){
case 1:
mBtnTest.setText("收到消息1");
}
}
};
@Override
protected void onCreate(final Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mBtnTest = (Button) findViewById(R.id.btn_test);
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
mTestHandler.sendEmptyMessage(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
}
在对某件实物进一步了解之前,我们要先对该事物的价值意义有一个理解,即他是做什么的,再明白事物产生或发生时做了什么,结束时又会有什么样的结果。
我们要讨论研究的是这个过程到底经历了什么,是发生什么因,再经历什么产生这个果。
当调用Handler发送消息相关方法时,会把这个消息发送到哪儿去?从上面的示例代码中可以看到消息最终还是会回到Handler手上,由他自己处理。我们要搞清楚的就是这个消息由发到收的过程。
消息会发送到哪儿去?
mTestHandler.sendEmptyMessage(1);
我们追随sendEmptyMessage()方法下去:
Handler无论以何种方式发送何种消息,都会经过到sendMessageAtTime()方法:
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
而此方法会先判断当前Handler的mQueue对象是否为空,再调用enqueueMessage()方法,从字面意思不难理解是将该消息入队保存起来。再看enqueueMessage()方法:
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
public final class Message implements Parcelable {
//....
Handler target;
}
该方法会先将Message和当前Handler绑定起来,不难理解当需要处理Message时直接甩给绑定他的Handler就是了。再调用queue.enqueueMessage()方法正式入队,而queue对象到底是一个什么样的对象?由单向链表实现的消息队列。queue.enqueueMessage()方法就是遍历链表将消息插入表尾保存起来,而从queue取消息就是把表头的Message拿出来。
接着来搞清楚queue他是何时怎样创建的?来看Handler的构造函数。
public Handler(Callback callback, boolean async) {
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
Handler的构造方法会先调用Looper.myLooper()方法看能不能获取一个Looper对象,如果获取不到程序就直接蹦了。再从该Looper对象中获取我们需要的消息队列。
Looper到底是一个怎样的对象,有这怎样的身份,在Handler机制中扮演这怎样的角色?来看myLooper()方法:
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
myLooper()方法会直接就从sThreadLocal对象中获取Looper,而sThreadLocal是一个ThreadLocal类对象,而ThreadLocal类说白了就是通过他存储的对象是线程私有的。
static final ThreadLocal sThreadLocal = new ThreadLocal();
调用get()方法直接从ThreadLocal中获取Looper,接下来就得看是何时set()将Loooper对象保存到ThreadLocal中去的。Looper.prepare()方法:
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
从这段源码可以看出,Looper不仅是线程私有的还是唯一不可替换。Looper对象创建时会初始化MessageQueue()对象,正是我们需要的队列。
之所以最上面的示例代码中我们并没有调用prepare()方法初始化Looper,程序也没有崩溃,那是因为在ActivityThread的Main方法中就已经初始化了Looper对象。
public final class ActivityThread {
//......
public static void main(String[] args) {
Looper.prepareMainLooper();
}
//......
}
到此我们算是明白消息会发送到哪儿去了,现在就要知道的是怎么取出消息交给Handler处理的。
首先MessageQueue封装有完整的添加(入队)和获取/删除(出队)方法,MessageQueeue.next()方法将链表当中表头第一个消息取出。
Message next() {
//..........
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
nextPollTimeoutMillis = -1;
}
if (mQuitting) {
dispose();
return null;
}
//............
}
//..............
}
}
代码虽然比较多,我们从第三行和第39行开始说起。next()方法实际是一个死循环,会一直从当前队列中去取Message,即使当前队列没有消息可取,也不会跳出循环,会一直执行,直到能够从队列中取到消息next()方法才会执行结束。
其次当Looper调用quit()方法,mQuitting变量为ture时会跳出死循环,next()方法返回null方法也会执行结束。
上面提到在ActivityThread中的main()方法中会初始化Looper,其实在不久之后便会开始从队列中取消息。
public static void main(String[] args) {
//......
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
调用Looper.loop()方法就会开始遍历取消息。
public static void loop() {
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
return;
}
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
}
loop()方法中也是一个死循环,调用queue.nex()方法开始阻塞式取消息,只有手动让Looper停止,next()方法才会返回null。
取到消息后,调用dispatchMessage()方法把消息交由Handler处理。
msg.target.dispatchMessage(msg);
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
不仅可以给Handler设置回调接口,Message也行。默认情况下会回调handleMessage()方法。
本以为说得差不多了,其实还有一个关键的问题。我们是在主线程中执行的loop()方法,死循环为什么没有造成Activity阻塞卡死?查阅资料Android中为什么主线程不会因为Looper.loop()里的死循环卡死后得知next()方法中会执行一个重要方法。
nativePollOnce(ptr, nextPollTimeoutMillis);
大佬分析得很好,我就不多说了。提一点,我们发送的延时消息,会通过Message字段/变量when,将时长保存下来,延时也是通过这个方法做到的。
Message next() {
final long now = SystemClock.uptimeMillis();
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
//......
}
}
}
总结,Handler发送消息会将消息保存到Looper维护的消息队列MessageQueue中去,而Looper会死循环一直从队列中取消息,取到消息后会交由Message绑定的Handler回调处理。
如果文字不够,那就拿出我的终极学习秘籍,来自三星架构师讲解的Handler通信机制源码,里面还结合了BAT的面试题,视频我已经上传到b站:https://www.bilibili.com/video/av78745845
第一次看文章的朋友可以关注我,会不定期发布大厂面试题、Android架构技术知识点及解析等内容,还有学习PDF+源码笔记+面试文档+进阶视频分享