- ROS2 强化学习:案例与代码实战
芯动大师
ROS2学习目标检测人工智能
一、引言在机器人技术不断发展的今天,强化学习(RL)作为一种强大的机器学习范式,为机器人的智能决策和自主控制提供了新的途径。ROS2(RobotOperatingSystem2)作为新一代机器人操作系统,具有更好的实时性、分布式性能和安全性,为强化学习在机器人领域的应用提供了更坚实的基础。本文将通过一个具体案例,深入探讨ROS2与强化学习的结合应用,并提供相关代码实现。二、案例背景本案例以移动机器
- DeepSeek打破AI天花板:MoE架构+RL推理,效率提升5倍的底层逻辑
泡泡Java
AI大模型人工智能架构
文章目录一、引言二、MoE架构:高效计算的核心支撑(一)MoE架构概述(二)DeepSeekMoE架构的创新点(三)MoE架构的代码实现示例三、RL推理:智能提升的关键驱动(一)RL推理概述(二)R1的训练流程(三)RL推理中的关键技术(四)RL推理的代码实现示例四、MoE架构与RL推理的结合:效率提升的奥秘(一)计算效率的提升(二)推理能力的增强(三)整体性能的飞跃五、结论与展望《DeepSee
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 强化学习(Reinforcement Learning, RL)概览
MzKyle
人工智能人工智能强化学习机器学习机器人
一、强化学习的核心概念与定位1.定义强化学习是机器学习的分支,研究智能体(Agent)在动态环境中通过与环境交互,以最大化累积奖励为目标的学习机制。与监督学习(有标注数据)和无监督学习(无目标)不同,强化学习通过“试错”学习,不依赖先验知识,适合解决动态决策问题。2.核心要素智能体(Agent):执行决策的主体,如游戏AI、机器人。环境(Environment):智能体之外的一切,如棋盘、物理世界
- 动手学强化学习 第10章-Actor-Critic 算法 训练代码
zhqh100
算法深度学习pytorch人工智能
基于Hands-on-RL/第10章-Actor-Critic算法.ipynbatmain·boyu-ai/Hands-on-RL·GitHub理论Actor-Critic算法修改了警告和报错运行环境DebianGNU/Linux12Python3.9.19torch2.0.1gym0.26.2运行代码Actor-Critic.py#!/usr/bin/envpythonimportgymimpo
- 生成本地 微调 +强化学习 qwen3-4b 研究搭建流程步骤
行云流水AI笔记
人工智能
在本地微调并应用强化学习(RL)对Qwen-3-4B模型进行研究和搭建,是一个复杂但可行的过程。以下是一个详细的流程步骤,涵盖从环境准备、数据准备、模型微调到强化学习应用的各个阶段。一、环境准备硬件要求GPU:至少需要多块高性能GPU(如NVIDIAA100或V100),因为Qwen-3-4B模型参数量大,内存需求高。内存:建议至少128GBRAM,以确保数据处理和模型加载的流畅性。存储:高速SS
- 【无标题】
行云流水AI笔记
人工智能
在本地对Qwen-3-4B模型进行微调,并结合强化学习(RL)以提高其从自然语言(TXT)到结构化查询语言(SQL)的转换能力(即TXT2SQL),是一个复杂但非常有价值的任务。以下是一个详细的流程步骤,涵盖从环境准备、数据准备、模型微调到强化学习应用的各个方面。一、项目概述目标:通过微调和强化学习提升Qwen-3-4B模型在TXT2SQL任务上的表现,使其能够更准确地将自然语言查询转换为相应的S
- Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能自然语言处理
论文主要内容总结研究背景与问题大语言模型(LLMs)在决策领域展现出巨大潜力,但预训练模型存在推理能力不足、难以适应新环境的问题,严重制约了其在复杂现实任务中的应用。现有方法如强化学习(RL)单独使用或LLM辅助RL的方式,仍依赖token预测范式,缺乏结构化推理和快速适应性。核心框架与方法提出因果感知大语言模型(Causal-awareLLMs),将结构因果模型(SCM)整合到决策过程中,采用“
- 训练成本降低2000倍: 直接将推理能力注入LLM
大模型最新论文
深度学习人工智能语言模型自然语言处理llama
论文标题Resa:TransparentReasoningModelsviaSAEs论文地址https://arxiv.org/pdf/2506.09967代码地址https://github.com/shangshang-wang/Resa作者背景南加州大学动机激发大模型的推理能力通常需要繁重的后训练工作(带CoT的RL或SFT),这一过程不仅需要昂贵的数据与计算资源,还缺乏可解释性(并不清楚模
- 【论文解读】s3: 仅 2.4K 数据即可 RL 训练Search Agent
1stauthro:PatrickJiangpaper:[2505.14146]s3:YouDon’tNeedThatMuchDatatoTrainaSearchAgentviaRLcode:pat-jj/s3:s3-EfficientYetEffectiveSearchAgentTrainingviaRLforRAG5.总结(结果先行)s3框架以其“解耦搜索与生成、仅训练搜索代理、采用GBR奖励
- 强化学习-K臂老虎机
强化学习强化学习(ReinforcementLearning,RL)是一种机器学习方法,强化学习的基础框架是马尔可夫决策过程,它允许智能体(Agent)能够在与环境(Environment)的交互中通过试错来学习最优策略。智能体在环境中执行行动(Action),并根据行动的结果接收反馈,即奖励(Reward)。这些奖励信号指导智能体调整其策略,以最大化长期累积奖励。强化学习的核心是价值函数(Val
- 九章云极发布九章智算云Alaya NeW Cloud 2.0, 开创Serverless+RL技术趋势
2025年6月16日北京讯——AI独角兽企业九章云极DataCanvas在“九章云极智能计算论坛”上正式发布新一代全栈智能计算云平台——九章智算云AlayaNeWCloud2.0,并同步启动全球首个强化学习智算服务。该平台基于Serverless技术架构与强化学习技术的深度融合,成功突破“秒级生成百万token级”的性能瓶颈,旨在为全球AI创新企业及研发机构提供智能计算基础设施级服务。九章智算
- 编辑文章 - 题解:P11557 [ROIR 2016] 有趣数字 (Day 2)
lhschris
算法深度优先图论
思路记忆化搜索。很明显这题的输入一定是字符串。那么我们还需要写一个字符串减法,来计算左端点减一的值。题目要求计算区间l∼rl\simrl∼r内有趣的数字的数量。那么1∼r1\simr1∼r的有趣数字的数量减去1∼l−11\siml-11∼l−1的数量就是区间内有趣数字的数量。那我们可以用记忆化搜索的方式就行计算。记忆化搜索只需要三个参数。当前构造到的位置nownownow,上一个数字lastlas
- 限流电阻的选择
XTao EmbedLogs
电路设计单片机嵌入式硬件电路设计pcb工艺嵌入式
限流电阻的作用限流电阻是用来减小负载端电流,例如在发光二极管一端添加一个限流电阻可以减小流过发光二极管的电流,防止损坏LED灯。限流电阻经常串联于电路中,用以限制所在支路电流的大小,以防电流过大烧坏所串联的元器件。同时限流电阻也能起分压作用。其原理是:电阻RL是负载电阻,R为稳压调整电阻(也称为限流电阻),D为稳压管。按稳压电路设计准则,在输入电压基本不变时,RL变小时,流过RL的电流增加,但流过
- 人工智能-SFT(Supervised Fine-Tuning)、RLHF 和 GRPO
高效匠人
人工智能人工智能
以下是SFT(SupervisedFine-Tuning)、RLHF(ReinforcementLearningfromHumanFeedback)和GRPO群体相对策略优化(GRPO,GroupRelativePolicyOptimization)是一种强化学习(RL)算法,的核心差异与原理对比,涵盖定义、训练机制、优缺点及适用场景:一、核心定义方法核心定义SFT基于标注的「输入-输出」对进行监
- 【大模型】【DeepSeek】DeepSeek-R1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
量子-Alex
LLM大模型人工智能语言模型
DeepSeek-R1:通过强化学习激励大语言模型的推理能力0.论文摘要我们推出了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练而成的模型,没有经过监督微调(SFT)作为初步步骤,展现了卓越的推理能力。通过RL,DeepSeek-R1-Zero自然涌现出许多强大且有趣的推理行为。然而,它也面临诸如可读性差
- 强化学习从基础到进阶-常见问题和面试必知必答[1]:强化学习概述、序列决策、动作空间定义、策略价值函数、探索与利用、Gym强化学习实验
小城哇哇
人工智能语言模型ai深度学习机器学习强化学习agi
1.强化学习核心概念强化学习(reinforcementlearning,RL):智能体可以在与复杂且不确定的环境进行交互时,尝试使所获得的奖励最大化的算法。动作(action):环境接收到的智能体基于当前状态的输出。状态(state):智能体从环境中获取的状态。奖励(reward):智能体从环境中获取的反馈信号,这个信号指定了智能体在某一步采取了某个策略以后是否得到奖励,以及奖励的大小。探索(e
- 论文速读|RP1M:用于双手灵巧机械手弹奏钢琴的大规模运动数据集
项目地址:RP1M:ALarge-ScaleMotionDatasetforPianoPlayingwithBi-ManualDexterousRobotHandsRP1M数据集特别是为了研究双手灵巧机械手在钢琴演奏时的动态双手操控。该数据集包含了大约100万条专家级别的双手钢琴演奏动作轨迹,覆盖了大约2000首音乐作品。这些专家轨迹是通过为每首歌曲训练一个强化学习(RL)代理,并使用不同的随机种
- 【速写】TRL:Trainer的细节与思考(PPO/DPO+LoRA可行性)
囚生CY
速写人工智能
序言问题源于PPOTrainer里并没有跟SFTTrainer类似的peft_config参数,而SFTTrainer在带和不带peft_config参数的情况下分别对应高效微调和全量微调。自然就会想到是否可以把PPO和PEFT结合,但是目前peft包和trl包上似乎还是存在这种兼容性的问题。另一个问题就是奖励函数的设置,这个是RL从诞生以来一直存在的一个老大难问题。现在有很多方案,但是我始终觉得
- DexArt Benchmarking Generalizable Dexterous Manipulation with Articulated Objects
好气呀
具身智能铰接物体机器人
文章目录概述概述accepted:CVPR2023项目主页文章解读参考: RL的工作,很清晰的idea,后续可以读代码项目仓库
- 强化学习Reinforcement Learning与逆强化学习:理论与实践
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
强化学习,逆强化学习,强化学习算法,逆强化学习算法,深度强化学习,应用场景1.背景介绍在人工智能领域,强化学习(ReinforcementLearning,RL)作为一种模仿人类学习的智能算法,近年来取得了显著进展,并在机器人控制、游戏AI、推荐系统等领域展现出强大的应用潜力。强化学习的核心思想是通过试错学习,让智能体在与环境交互的过程中不断优化策略,以最大化累积的奖励。然而,在现实世界中,获取精
- Med-R1论文阅读理解-1
要努力啊啊啊
大模型论文阅读论文阅读人工智能深度学习
论文总结:Med-R1:ReinforcementLearningforGeneralizableMedicalReasoninginVision-LanguageModels论文写了什么?本文提出了一种名为Med-R1的新框架,旨在通过强化学习(ReinforcementLearning,RL)提升视觉-语言模型(Vision-LanguageModels,VLMs)在医疗领域的推理能力与泛化能
- REINFORCE蒙特卡罗策略梯度算法详解:python从零实现
AI仙人掌
复现强化学习RL算法算法python开发语言
向所有学习者致敬!“学习不是装满一桶水,而是点燃一把火。”——叶芝我的博客主页:https://lizheng.blog.csdn.net欢迎点击加入AI人工智能社区!让我们一起努力,共创AI未来!好的!我会按照你的要求,认真完成翻译任务,确保内容完整、准确且符合要求。以下是翻译后的Markdown文档:引言强化学习(ReinforcementLearning,RL)的目标是训练智能体(agent
- 动手学强化学习 第 11 章 TRPO 算法(TRPOContinuous) 训练代码
zhqh100
算法人工智能强化学习pytorch
基于Hands-on-RL/第11章-TRPO算法.ipynbatmain·boyu-ai/Hands-on-RL·GitHub理论TRPO算法修改了警告和报错运行环境DebianGNU/Linux12Python3.9.19torch2.0.1gym0.26.2运行代码TRPOContinuous.py#!/usr/bin/envpythonimporttorchimportnumpyasnpi
- DeepSeek本地私有部署(基于Ollama)
奶羊cnk
人工智能deepseek
DeepSeek是一家由中国知名量化私募巨头幻方量化创立的人工智能公司,致力于开发高效、高性能的生成式AI模型。自成立以来,DeepSeek在短短一年多的时间里取得了显著的进展,推出了多个引人注目的开源模型,包括DeepSeekCoder、DeepSeekLLM、DeepSeek-V2、DeepSeek-V3、DeepSeek-Rl和多模态模型Janus。DeepSeek的爆火,引发了全球科技震动
- 使用MATLAB和Simulink进行基于强化学习的双足机器人步态控制仿真
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏simulink
目录一、准备工作二、步骤详解1.启动Simulink并创建新模型2.构建双足机器人简化模型3.设计强化学习环境强化学习环境概述4.实现强化学习控制器5.训练强化学习代理6.增加示波器观察输出7.配置仿真参数8.运行仿真并分析结果注意事项强化学习(ReinforcementLearning,RL)是一种通过智能体(agent)与环境互动来学习策略的机器学习方法。在双足机器人领域,强化学习可以用于自动
- OpenManus-RL 使用教程
戚逸玫Silas
OpenManus-RL使用教程OpenManus-RLAlivestreamdevelopmentofRLtunningforLLMagents项目地址:https://gitcode.com/gh_mirrors/op/OpenManus-RL1.项目介绍OpenManus-RL是一个开源项目,由Ulab-UIUC和MetaGPT合作领导。该项目是原始OpenManus创议的扩展版本。受到De
- 3中AI领域的主流方向:预测模型、强化学习和世界模型
pang企鹅
人工智能机器学习语言模型
引言近年来,人工智能(AI)技术飞速发展,涌现出多种不同的技术路线。其中,预测模型(如大语言模型)、强化学习(RL)和世界模型(WorldModels)代表了三种较大影响力的研究方向。本文将从技术原理、应用场景和未来趋势三个维度,对比分析这三种方向的核心差异与互补性。1.预测模型(PredictiveModels)1.1核心思想预测模型(如GPT、BERT等大语言模型)的核心目标是基于已有数据预测
- 强化学习_置信域算法&RL
Scc_hy
强化学习算法强化学习人工智能深度学习
1置信域算法到TRPO置信域算法核心:找到更新参数θ\thetaθ和θold\theta_{old}θold相关的近似目标函数,邻域N(θold)N(\theta_{old})N(θold)内寻找最大值近似(approximation):L(θ∣θold)L(\theta|\theta_{old})L(θ∣θold)最大化(Maximation):arg maxθ∈N(θold)L(θ∣θold
- 【强化学习】强化学习算法 - 马尔可夫决策过程
人类发明了工具
RL强化学习分享算法数学建模强化学习马尔可夫决策
文章目录马尔可夫决策过程(MarkovDecisionProcess,MDP)1.MDP原理介绍2.MDP建模/实现步骤3.MDP示例:简单网格世界(GridWorld)马尔可夫决策过程(MarkovDecisionProcess,MDP)1.MDP原理介绍马尔可夫决策过程(MDP)是强化学习(ReinforcementLearning,RL)中用于对序贯决策(SequentialDecision
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》