最长公共子序列

最长公共子序列是一个很经典的动态规划问题,最近正在学习动态规划,所以拿来这里再整理一下。

这个问题在《算法导论》中作为讲动态规划算法的例题出现。

动态规划,众所周知,第一步就是找子问题,也就是把一个大的问题分解成子问题。这里我们设两个字符串A、B,A = "a0, a1, a2, ..., am-1",B = "b0, b1, b2, ..., bn-1"。

(1)如果am-1 == bn-1,则当前最长公共子序列为"a0, a1, ..., am-2"与"b0, b1, ..., bn-2"的最长公共子序列与am-1的和。长度为"a0, a1, ..., am-2"与"b0, b1, ..., bn-2"的最长公共子序列的长度+1。

(2)如果am-1 != bn-1,则最长公共子序列为max("a0, a1, ..., am-2"与"b0, b1, ..., bn-1"的公共子序列,"a0, a1, ..., am-1"与"b0, b1, ..., bn-2"的公共子序列)

如果上述描述用数学公式表示,则引入一个二维数组c[][],其中c[i][j]记录X[i]与Y[j]的LCS长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,即,搜索方向。

这样我们可以总结出该问题的递归形式表达:


按照动态规划的思想,对问题的求解,其实就是对子问题自底向上的计算过程。这里,计算c[i][j]时,c[i-1][j-1]、c[i-1][j]、c[i][j-1]已经计算出来了,这样,我们可以根据X[i]与Y[j]的取值,按照上面的递推,求出c[i][j],同时把路径记录在b[i][j]中(路径只有3中方向:左上、左、上,如下图)。

最长公共子序列_第1张图片

计算c[][]矩阵的时间复杂度是O(m*n);根据b[][]矩阵寻找最长公共子序列的过程,由于每次调用至少向上或向左移动一步,这样最多需要(m+n)次就会i = 0或j = 0,也就是算法时间复杂度为O(m+n)。

你可能感兴趣的:(最长公共子序列)