pt-query-digest
功能:
根据一些规则分析查询语句,对可能的问题提出建议
说明:
pt-query-digest可以从普通MySQL日志,慢查询日志以及二进制日志中分析查询,甚至可以从SHOW PROCESSLIST和MySQL协议的tcpdump中进行分析,如果没有指定文件,它从标准输入流(STDIN)中读取数据。
整体概要(Overall)
示例:
# pt-query-digest/usr/local/mariadb/var/node2-slow.log > /root/mysql-slow.log
# 这个部分是一个大致的概要信息(类似loadrunner给出的概要信息),通过它可以对当前MySQL的查询性能做一个初步的评估,比如各个指标的最大值(max),平# 均值(min),95%分布值,中位数(median),标准偏差(stddev)。这些指标有查询的执行时间(Exec time),锁占用的时间(Lock time),MySQL执行器需要# 检查的行数(Rowsexamine),最后返回给客户端的行数(Rows sent),查询的大小。
# 290ms user time, 20ms system time, 26.31Mrss, 215.15M vsz
# Current date: Mon May 9 14:18:13 2016
# Hostname: localhost.localdomain
# Files: /data/mysql/localhost-slow.log
# Overall: 17 total, 4 unique,0.00 QPS, 0.00x concurrency _______________ 整体概要信息
# 上一行的含义:17个操作,4个语句,QPS太低了,所以显示为0
# Time range: 2016-04-10 19:57:45 to2016-04-29 14:27:38
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ============== =======
# Exec time 2751s 27s 938s 162s 464s 223s 60s
# Lock time 2ms 43us 434us 120us 424us 124us 53us
# Rows sent 81.79k 47 20.74k 4.81k 20.37k 7.99k 329.68
# Rows examine 345.13k 47 75.68k 20.30k 72.41k 30.48k 329.68
# Query size 2.34k 25 881 141 284.79 212.96 38.53
下面是查询的摘要信息(Profile)
这个部分对所有”重要”的查询(通常是比较慢的查询)做了个一览表:
每个查询都有一个Query ID,这个ID通过Hash计算出来的。pt-query-digest是根据这个所谓的Fingerprint来group by的。
# Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ==================== ======== ===== ===========
# 1 0x1F830B61B2FB68F0 2238.7287 81.4% 8 279.8411 28... SELECT ecs_goods
# 2 0x1FADF8A6BD46B153 244.0573 8.9% 4 61.0143 0.00 SELECT create_sn admin_user agent_sn
# 3 0xB1A36F5B279696D1 241.4298 8.8% 4 60.3574 0.00 SELECT ecs_goods
# MISC 0xMISC 26.8954 1.0% 1 26.8954 0.0 <1 ITEMS>
如下图:
Rank 整个分析中该“语句”的排名,一般也就是性能最差的。
Response time “语句”的响应时间以及整体占比情况。
Calls 该“语句”的执行次数。
R/Call 每次执行的平均响应时间【ResponseTime/Calls】。
V/M 响应时间的差异平均对比率。
Item 显示了其他2个占比较低而不值得单独显示的查询的统计数据。
下面是每条SQL的详细报告
这个部分会列出Profile表中每个查询的详细信息:
# Query 1: 0.00 QPS, 0.00x concurrency, ID0x1F830B61B2FB68F0 at byte 0 __
# This item is included in the reportbecause it matches --limit.
# Scores: V/M = 286.15
# Time range: 2016-04-10 19:57:45 to2016-04-26 12:51:19
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ============== ======= ======= =======
# Count 47 8
# Exec time 81 2239s 40s 938s 280s 918s 283s 285s
# Lock time 16 345us 43us 44us 43us 42us 0 42us
# Rows sent 3 2.47k 47 489 316.38 487.09 113.03 329.68
# Rows examine 0 2.47k 47 489 316.38 487.09 113.03 329.68
# Query size 8 200 25 25 25 25 0 25
# String:
# Databases b2b
# Hosts 116.228.235.114
# Users b2b (5/62%), b2b_user (3/37%)
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `b2b` LIKE 'ecs_goods'\G
# SHOW CREATE TABLE `b2b`.`ecs_goods`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT * FROM `ecs_goods`\G
# Query 2: 0.25 QPS, 15.25x concurrency, ID0x1FADF8A6BD46B153 at byte 4730
# This item is included in the reportbecause it matches --limit.
# Scores: V/M = 0.00
# Time range: 2016-04-28 15:17:28 to15:17:44
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ============== ======= ======= =======
# Count 23 4
# Exec time 8 244s 61s 61s 61s 60s 0 60s
# Lock time 62 1ms 193us 434us 318us 424us 112us 424us
# Rows sent 94 77.67k 16.33k 20.74k 19.42k 20.37k 1.81k 20.37k
# Rows examine 86 297.44k 71.27k 75.68k 74.36k 72.41k 1.49k 72.41k
# Query size 48 1.13k 290 290 290 290 0 290
# String:
# Databases KF_Mobile
# Hosts 116.228.235.114
# Users KF_Mobile_user
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `KF_Mobile` LIKE 'create_sn'\G
# SHOW CREATE TABLE `KF_Mobile`.`create_sn`\G
# SHOW TABLE STATUS FROM `KF_Mobile` LIKE 'admin_user'\G
# SHOW CREATE TABLE `KF_Mobile`.`admin_user`\G
# SHOW TABLE STATUS FROM `KF_Mobile` LIKE 'agent_sn'\G
# SHOW CREATE TABLE `KF_Mobile`.`agent_sn`\G
# EXPLAIN /*!50100 PARTITIONS*/
#select * from (
select distincts.*,u.OEM_name,u.admin_account,IFNULL(i.active_state,'00') AS state fromcreate_sn s left
joinadmin_user u on s.agent_id=u.agent_id left join agent_sn i on i.sn_num=s.sn_num
##)n
##WHERE n.agent_id='84872355' order byn.create_date desc 84872355\G
# Query 3: 0.00 QPS, 0.00x concurrency, ID0xB1A36F5B279696D1 at byte 6896
# This item is included in the reportbecause it matches --limit.
# Scores: V/M = 0.00
# Time range: 2016-04-25 19:13:19 to2016-04-29 14:27:38
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ============== ======= ======= =======
# Count 23 4
# Exec time 8 241s 60s 60s 60s 60s 0 60s
# Lock time 12 263us 53us 100us 65us 98us 19us 54us
# Rows sent 1 1.26k 322 326 323.75 313.99 0 313.99
# Rows examine 0 1.26k 322 326 323.75 313.99 0 313.99
# Query size 6 156 39 39 39 39 0 39
# String:
# Databases b2b
# Hosts 116.228.235.114
# Users b2b (2/50%), b2b_user (2/50%)
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `b2b` LIKE 'ecs_goods'\G
# SHOW CREATE TABLE `b2b`.`ecs_goods`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT * FROM `ecs_goods` LIMIT 0, 1000\
另外,可以从tcpdump中分析:
因为慢日志方式需要重新连接,而生产环境重启中间件是非常昂贵的操作。
所以在数据库服务器上抓包分析也是一种不错的选择。
pt-query-digest对于抓包有一定的格式。(-x -nn -q -tttt) -s:源端口 -c:抓包的数量
操作步骤:
1、抓包 tcpdump-s 65535 -x -nn -q -tttt -i any -c 100000 port 3306 > mysql.tcp.dmp 2、分析 pt-query-digest--limit 20 --type tcpdump mysql.tcp.dmp
还有一些其他方法,没仔细搞过,贴一下吧:
1、从PROCESSLIST中查询某个MySQL中最慢的查询:
pt-query-digest -processlisth=host1 【操作失败,不知道原因】
2、从一台机器上讲slow log保存到另外一台机器上待稍后详细分析:
pt-query-digest --reviewh=host2 --no-report /usr/local/mariadb/var/node2-slow.log 建议:当slow log很大的时候最好还是将日志文件移到其他机器上进行分析。
还可以跟一些过滤条件。详见官方文档:http://www.percona.com/doc/percona-toolkit/2.2/pt-query-digest.html
另外结合一些第三方工具还能生成相应的报表,可以参考这里:
http://biancheng.dnbcw.info/mysql/433514.html
http://blog.csdn.net/seteor/article/details/24017913