传送门:
Dijkstra
Bellman-Ford
SPFA
Floyd
1.Dijkstra算法的局限性
像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = 7, dist[3] = 5;在其中找出最小的边是dist[3] = 5;然后更新dist[2] = 0,最终得到dist[2] = 0,dist[3] = 5,而实际上dist[3] = 2;所以如果图中含有负权值,dijkstra失效
2.Bellman-Ford算法思想
适用前提:没有负环(或称为负权值回路),因为有负环的话距离为负无穷。
构造一个最短路径长度数组序列dist1[u] dist2[u]...distn-1[u],其中:
dist1[u]为从源点v0出发到终点u的只经过一条边的最短路径长度,并有dist1[u] = Edge[v0][u]
dist2[u]为从源点v0出发最多经过不构成负权值回路的两条边到终点u的最短路径长度
dist3[u]为从源点v0出发最多经过不构成负权值回路的三条边到终点u的最短路径长度
................
distn-1[u]为从源点v0出发最多经过不构成负权值回路的n-1条边到终点u的最短路径长度
算法最终目的是计算出distn-1[u],即为源点到顶点u的最短路径长度
初始:dist1[u] = Edge[v0][u]
递推:distk[u] = min(distk-1[u], min{distk-1[j] + Edge[j][u]})(松弛操作,迭代n-2次)
3.本质思想:
在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边进行判断:设边的权值为w(u, v),如果边的引入会使得distk-1[v]的值再减小,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) < distk-1[v],,那么distk[v] = distk-1[u] + w(u, v),这个称为一次松弛
所以递推公式可改为:
初始:dist0[u] = INF dist0[v0] = 0(v0是源点)
递推:对于每条边(u, v) distk[v] = min(distk-1[v], distk-1[u] + w(u, v))(松弛操作,迭代n-1次)
如果迭代n-1次后,再次迭代,如果此时还有dist会更新,说明存在负环。
无负环的时候,迭代更新次数最多为n-1次,所以设置一个更新变量可以在不更新的时候直接跳出循环
拓展:
Bellman-Ford算法还能用来求最长路或者判断正环,思路是dist数组含义是从原点出发到其他每个顶点的最长路径的长度,初始时,各个顶点dist为0,在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边进行判断:设边的权值为w(u, v),如果边的引入会使得distk-1[v]的值再增加,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) > distk-1[v],,那么distk[v] = distk-1[u] + w(u, v)。例题:POJ-1860
4.代码实现:时间复杂度O(nm)(n为点数,m为边数)
输入:
7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3
输出:
从0到1距离是: 1 0->3->2->1
从0到2距离是: 3 0->3->2
从0到3距离是: 5 0->3
从0到4距离是: 0 0->3->2->1->4
从0到5距离是: 4 0->3->5
从0到6距离是: 3 0->3->2->1->4->6
不存在负环
1 #include2 #include 3 #include 4 #include 5 #include 6 #include 7 #include 8 #include