spark之RDD练习

目录
  • 一、基础练习
    • 练习一:翻倍列表中的数值并排序列表,并选出其中大于等于10的元素。
    • 练习二:将字符数组里面的每一个元素先切分在压平。
    • 练习三:求两个列表中的交集、并集、及去重后的结果
    • 练习四:对List列表中的kv对进行join与union操作
    • 练习五:cogroup与groupByKey的区别
    • 练习六:reduce聚合操作
    • 练习七:对List的kv对进行合并后聚合及排序
  • 二、Spark RDD的高级算子
    • 1、mapPartitionsWithIndex
    • 2、aggregate

一、基础练习

练习一:翻倍列表中的数值并排序列表,并选出其中大于等于10的元素。

//通过并行化生成rdd
val rdd1 = sc.parallelize(List(5, 6, 14, 7, 3, 8, 2, 9, 1, 10))

//对rdd1里的每一个元素乘2然后排序
val rdd2 = rdd1.map(_ * 2).sortBy(x => x, true)
rdd1.collect
res0: Array[Int] = Array(2, 4, 6, 10, 12, 14, 16, 18, 20, 28)

//过滤出大于等于十的元素
val rdd3 = rdd2.filter(_ >= 10)

//将元素以数组的方式在客户端显示
rdd2.collect
res1: Array[Int] = Array(10, 12, 14, 16, 18, 20, 28)

练习二:将字符数组里面的每一个元素先切分在压平。

val rdd1 = sc.parallelize(Array("a b c", "d e f", "h i j"))
//将rdd1里面的每一个元素先切分在压平
val rdd2 = rdd1.flatMap(_.split(' '))
rdd1.collect
res2: Array[String] = Array(a, b, c, d, e, f, h, i, j)

练习三:求两个列表中的交集、并集、及去重后的结果

val rdd1 = sc.parallelize(List(5, 6, 4, 3))
val rdd2 = sc.parallelize(List(1, 2, 3, 4))

//求并集
val rdd3 = rdd1.union(rdd2)
rdd3.collect
res3: Array[Int] = Array(5, 6, 4, 3, 1, 2, 3, 4)

//去重
rdd3.distinct.collect
res5: Array[Int] = Array(4, 6, 2, 1, 3, 5)

//求交集
val rdd4 = rdd1.intersection(rdd2)
rdd4.collect
res4: Array[Int] = Array(4, 3)

练习四:对List列表中的kv对进行join与union操作

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))

//求jion
val rdd3 = rdd1.join(rdd2)
rdd3.collect
res0: Array[(String, (Int, Int))] = Array((tom,(1,1)), (jerry,(3,2)))

//求并集
val rdd4 = rdd1 union rdd2
rdd4.collect
res1: Array[(String, Int)] = Array((tom,1), (jerry,3), (kitty,2), (jerry,2), (tom,1), (shuke,2))

//按key进行分组
val rdd5 = rdd4.groupByKey
rdd5.collect
res5: Array[(String, Iterable[Int])] = 
Array((tom,CompactBuffer(1, 1)), 
(jerry,CompactBuffer(3, 2)), 
(shuke,CompactBuffer(2)), 
(kitty,CompactBuffer(2)))

练习五:cogroup与groupByKey的区别

val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))
//cogroup
val rdd3 = rdd1.cogroup(rdd2)
//注意cogroup与groupByKey的区别
rdd3.collect
res0: Array[(String, (Iterable[Int], Iterable[Int]))] = 
Array((tom,(CompactBuffer(1, 2),CompactBuffer(1))), 
(jerry,(CompactBuffer(3),CompactBuffer(2))), 
(shuke,(CompactBuffer(),CompactBuffer(2))), 
(kitty,(CompactBuffer(2),CompactBuffer())))
//可看出groupByKey中对于每个key只有一个CompactBuffer(2),且CompactBuffer括号内的数值进行了合并成了列表
//而对于cogroup有多少个key就有几个CompactBuffer,且CompactBuffer括号内的数值就是原来的value

练习六:reduce聚合操作

val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5))

//reduce聚合
val rdd2 = rdd1.reduce(_ + _)
rdd2: Int = 15

练习七:对List的kv对进行合并后聚合及排序

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2),  ("shuke", 1)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 3), ("shuke", 2), ("kitty", 5)))

val rdd3 = rdd1.union(rdd2)
rdd3.collect
res5: Array[(String, Int)] = Array((tom,1), (jerry,3), (kitty,2), (shuke,1), (jerry,2), (tom,3), (shuke,2), (kitty,5))

//按key进行聚合
val rdd4 = rdd3.reduceByKey(_ + _)
rdd4.collect
res6: Array[(String, Int)] = Array((tom,4), (jerry,5), (shuke,3), (kitty,7))

//按value的降序排序
val rdd5 = rdd4.map(t => (t._2, t._1)).sortByKey(false).map(t => (t._2, t._1))
rdd5.collect
res9: Array[(String, Int)] = Array((kitty,7), (jerry,5), (tom,4), (shuke,3))
//第一个map进行kv调换,然后sortByKey(false)降序排序,之后再一次map对kv调换回来

二、Spark RDD的高级算子

1、mapPartitionsWithIndex

接收一个函数参数:

  • 第一个参数:分区号
  • 第二个参数:分区中的元素
//创建一个函数返回RDD中的每个分区号和元素:

val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)

def func1(index:Int, iter:Iterator[Int]):Iterator[String] ={
   iter.toList.map( x => "[PartID:" + index + ", value=" + x + "]" ).iterator
}

//调用:
rdd1.mapPartitionsWithIndex(func1).collect
res2: Array[String] = 
Array([PartID:0, value=1], [PartID:0, value=2], [PartID:0, value=3], 
[PartID:0, value=4], [PartID:1, value=5], [PartID:1, value=6], 
[PartID:1, value=7], [PartID:1, value=8], [PartID:1, value=9])

2、aggregate

  先对局部聚合,再对全局聚合

spark之RDD练习_第1张图片

  • 查看每个分区中的元素:
//创建一个函数返回RDD中的每个分区号和元素:

val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)

def func1(index:Int, iter:Iterator[Int]):Iterator[String] ={
   iter.toList.map( x => "[PartID:" + index + ", value=" + x + "]" ).iterator
}

//调用:
rdd1.mapPartitionsWithIndex(func1).collect
res2: Array[String] = 
Array([PartID:0, value=1], [PartID:0, value=2], [PartID:0, value=3], 
[PartID:0, value=4], [PartID:1, value=5], [PartID:1, value=6], 
[PartID:1, value=7], [PartID:1, value=8], [PartID:1, value=9])

//将每个分区中的最大值求和(注意:初始值是0):
rdd1.aggregate(0)(math.max(_,_),_+_)
res3: Int = 7

//如果初始值时候10,则结果为:30。
rdd1.aggregate(10)(math.max(_,_),_+_)
res4: Int = 30

//如果是求和,注意:初始值是0:
scala> rdd1.aggregate(0)(_+_,_+_)
res5: Int = 15

//如果初始值是10,则结果是:45
scala> rdd1.aggregate(10)(_+_,_+_)
res6: Int = 45
  • 一个字符串的例子:
val rdd2 = sc.parallelize(List("a","b","c","d","e","f"),2)

//修改一下刚才的查看分区元素的函数
scala> def func2(index:Int, iter:Iterator[(String)]):Iterator[String]=
{iter.toList.map(x=>"partID:" + index + ",val:" + x + "]").iterator}

//两个分区中的元素:
scala> rdd2.mapPartitionsWithIndex(func2).collect
res7: Array[String] = Array(partID:0,val:a], partID:0,val:b], partID:0,val:c], partID:1,val:d], partID:1,val:e], partID:1,val:f])

//运行结果:
scala> rdd2.aggregate("")(_+_,_+_)
res1: String = abcdef

scala> rdd2.aggregate("|")(_+_,_+_)
res2: String = ||abc|def


  • 更复杂一点的例子
scala> val rdd3 = sc.parallelize(List("12","23","345","4567"),2)

//最后是x+y
scala> rdd3.aggregate("")((x,y)=>math.max(x.length,y.length).toString,(x,y)=>x+y)
res5: String = 24

//最后是y+x
scala> rdd3.aggregate("")((x,y)=>math.max(x.length,y.length).toString,(x,y)=>y+x)
res13: String = 42


val rdd4 = sc.parallelize(List("12","23","345",""),2)
//最后是x+y
scala> rdd4.aggregate("")((x,y) => math.min(x.length,y.length).toString,(x,y)=>x+y)
res17: String = 10

//最后是y+x
scala> rdd4.aggregate("")((x,y) => math.min(x.length,y.length).toString,(x,y)=>y+x)
res18: String = 01

你可能感兴趣的:(spark之RDD练习)