Hadoop(七):自定义输入输出格式

MR输入格式概述

  • 数据输入格式 InputFormat。

  • 用于描述MR作业的数据输入规范。

  • 输入格式在MR框架中的作用:

    • 文件进行分块(split),1个块就是1个Mapper任务。

    • 从输入分块中将数据记录逐一读出,并转换为Map的输入键值对。

  • 如果想自定义输入格式,需要实现:

    • 顶级输入格式类:org.apache.hadoop.mapreduce.InputFormat

    • 顶级块类:org.apache.hadoop.mapreduce.InputSplit

    • 顶级块数据读取类:org.apache.hadoop.mapreduce.RecordReader

Hadoop内置输入格式

  • Hadoop提供了大量的内置数据输入格式,包括:CombineFileInputFormat、SequenceFileInputFormat、SequenceFileAsTextInputFormat、NlineInputFormat、FileInputFormat、TextInputFormat、KeyValueTextInputFormat等。最常用的是TextInputFormatKeyValueTextInputFormat这两种。

  • TextInputFormat是MR框架默认的数据读入格式(一般学习的第一个例子wordcount就是用的这个格式),

    • 可以将文本文件分块逐行读入一遍Map节点处理。

    • key为当前行在整个文本文件中的字节偏移量,value为当前行的内容。

  • KeyValueTextInputFormat。

    • 可以将一个按照格式逐行保存的文本文件逐行读出,并自动解析为相对于的key和value。默认按照'\t'分割。

    • 也就是说1行的\t前的内容是key,后面是value。

    • 如果没有\t,value就设置为empty。

自定义输入格式从MySQL中取数

  • 自定义输入格式,我们需要继承InputFormat,InputSplit和RecordReader三个类,并重写以下方法:

    • 基本的作用和我们要重写的内容见下表。

    • 下表内容并不限定于MySQL中取数(就是从文件取数也要实现这些)。

    • 1个split就是一个Map,和Reduce的个数不同,Mapper的任务个数是InputFormat决定的,Reduce任务个数是客户决定的。

Hadoop(七):自定义输入输出格式_第1张图片

 

 

  • 自定义输入Value抽象类,因为我们从MySQL中读取的是一行数据,必然要使用一个对象来存储这些数据,我们先定义这个对象的抽象类,这样可以先暂时跳过这个类具体的内容。

package com.rzp.ifdemo;
​
import org.apache.hadoop.io.Writable;
​
import java.sql.ResultSet;
import java.sql.SQLException;
​
/**
 * mysql输入的value类型,其实应用中使用到的数据类型必须继承自该类
 */
public abstract class MysqlInputValue implements Writable {
    //从数据库返回链接中读取字段信息
    public abstract void readFields(ResultSet rs) throws SQLException;
}
​

 

  • 自定义输入格式

package com.rzp.ifdemo;
​
​
import com.rzp.pojo.UrlCountMapperInputValue;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.MapTask;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.util.ReflectionUtils;
​
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.*;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
​
/**
 *
 */
public class MysqlInputFormatextends MysqlInputValue> extends InputFormat {
    public static final String MYSQL_INPUT_DRIVER_KEY = "mysql.input.driver";  //数据库链接drive,后续在主方法会重新传参数
    public static final String MYSQL_INPUT_URL_KEY = "mysql.input.url";  //数据库链接url,后续在主方法会重新传参数
    public static final String MYSQL_INPUT_USERNAME_KEY = "mysql.input.username";  //数据库链接username,后续在主方法会重新传参数
    public static final String MYSQL_INPUT_PASSWORD_KEY = "mysql.input.password";  //数据库链接password,后续在主方法会重新传参数
    public static final String MYSQL_SELECT_KEY = "mysql.input.select";   //查询总记录数量的sql,后续在主方法会重新传参数
    public static final String MYSQL_SELECT_RECORD_KEY = "mysql.input.select.record";    //查询记录的sql,后续在主方法会重新传参数
    public static final String MYSQL_INPUT_SPLIT_KEY = "mysql.input.split.pre.record.count";      //决定多少条记录1个split,后续在主方法会重新传参数
    public static final String MYSQL_OUTPUT_VALUE_CLASS_KEY = "mysql.output.value.class";       //最终输出的value,暂时不管
​
​
    @Override
    public List getSplits(JobContext context) throws IOException, InterruptedException {
        //该方法的作用就是返回数据分块,ApplicationMaster根据分块信息数量决定map task的数量
        Configuration conf = context.getConfiguration();
        Connection conn = null; //Mysql链接
        PreparedStatement pstmt = null;
        ResultSet rs = null;
        String sql = conf.get(MYSQL_SELECT_KEY);
        long recordCount = 0;//总记录数量
try {
            conn = this.getConnection(conf);
            //传入的sql是查询总数量的,在执行主程序中会传入select count(*) from
            pstmt = conn.prepareStatement(sql);
            rs = pstmt.executeQuery();
            if (rs.next()){
                //recordCount = 表的总行数
                recordCount = rs.getLong(1); //获取数量
            }
        } catch (Exception e) {
            e.printStackTrace();
        }finally {
            this.closeConnection(conn,pstmt,rs);
        }
        //开始处理生成input split
        List list = new ArrayList();
        //把配置文件中的MYSQL_INPUT_SPLIT_KEY对应的value取出来,如果没找到,则取默认值(100)
        long preRecordCountOfSplit = conf.getLong(MYSQL_INPUT_SPLIT_KEY,100);
​
        int numSplits = (int)(recordCount / preRecordCountOfSplit + (recordCount % preRecordCountOfSplit ==0 ? 0:1));
        for (int i = 0; i < numSplits; i++) {
            if (i != numSplits-1){
                list.add(new MysqlInputSplit(i*preRecordCountOfSplit,(i+1)*preRecordCountOfSplit));
            }else{
                list.add(new MysqlInputSplit(i*preRecordCountOfSplit,recordCount));
            }
        }
        return list;
    }
​
    @Override
    public RecordReader createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
        //返回具体处理分块数据的recordReader类对象
        RecordReader reader = new MysqlRecordReader();
//        reader.initialize(split,context);
        return reader;
    }
​
    //根据配置信息获取数据库链接
    private Connection getConnection(Configuration conf) throws SQLException, ClassNotFoundException {
        String driver = conf.get(MYSQL_INPUT_DRIVER_KEY);
        String url = conf.get(MYSQL_INPUT_URL_KEY);
        String username = conf.get(MYSQL_INPUT_USERNAME_KEY);
        String password = conf.get(MYSQL_INPUT_PASSWORD_KEY);
​
        Class.forName(driver);
        return DriverManager.getConnection(url,username,password);
    }
​
    //关闭链接
    private void closeConnection(Connection conn,Statement state,ResultSet rs) {
        try {
            if (rs!=null)rs.close();
            if (state!=null)state.close();
            if (conn!=null)conn.close();
        } catch (SQLException e) {
            e.printStackTrace();
        }
    }
​
​
    //自定义读取数据的recordReader类
    public class MysqlRecordReader extends RecordReader{
        private Connection conn;
        private Configuration conf;
        private MysqlInputSplit split;
        private LongWritable key = null;
        private V value = null;
        private ResultSet resultSet = null;
        private long post = 0; //位置信息
​
        @Override
        public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
            //传入分块信息,当我们传入的mysplit是1-4时,查询的结果就是1-4行记录
            this.split = (MysqlInputSplit) split;
            this.conf = context.getConfiguration();
        }
​
        //创建value对象
        private V createValue(){
            Classextends MysqlInputValue> clazz= this.conf.getClass(MYSQL_OUTPUT_VALUE_CLASS_KEY,NullMysqlInputValue.class,MysqlInputValue.class);
            return (V) ReflectionUtils.newInstance(clazz,this.conf);
        }
​
        //获取查询sql
        private String getQuerqSql(){
            String sql = this.conf.get(MYSQL_SELECT_RECORD_KEY);
            try {
                //根据传入的split数值,形成查询数据的sql,当我们传入的mysplit是1-4时,查询的结果就是1-4行记录
                sql += " limit "+ this.split.getLength();
                sql += " offset "+ this.split.getStart();
            } catch (Exception e) {
                e.printStackTrace();
            }
            return sql;
        }
​
​
        //重写方法--获取下一行的value
        @Override
        public boolean nextKeyValue() throws IOException, InterruptedException {
            //防止key、value、链接为空
            if(this.key == null){
                this.key = new LongWritable();
            }
            if(this.value == null){
                this.value = this.createValue();
            }
            if(this.conn==null){
                try {
                    this.conn = MysqlInputFormat.this.getConnection(this.conf);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
​
​
​
            try {
                //还没查数据库时才需要查resuleSet
                if(resultSet ==null){
                    //调用getQuerqSql方法查询当前split的数据
                    String sql = this.getQuerqSql();
                    PreparedStatement pstmt = this.conn.prepareStatement(sql);
                    //把查询到的数据输入到resultSet中
                    this.resultSet = pstmt.executeQuery();
                }
                //正式的进行处理操作
                if(!this.resultSet.next()){
                    return false;//resultSet没有结果了
                }
​
                //Mapper会调用run方法循环执行nextKeyValue()(就是我们重写的这个方法)
                //备注(Mapper不是直接调用我们的方法,中间经过很多层,比如MapTask类,里面还会执行进度(progress的修改)
                //因此我们实现的时候只需要写每一行是如何传入value的就可以了
                //这里我们调用了UrlCountMapperInputValue实体类的写参数的方法
                this.value.readFields(this.resultSet);
                this.key.set(this.post);
                this.post++;
                return true;
            } catch (SQLException e) {
                e.printStackTrace();
            }
            return false;
        }
​
        //重写方法,返回当前行的key值
        @Override
        public LongWritable getCurrentKey() throws IOException, InterruptedException {
            return this.key;
        }
​
        //重写方法,返回当前行的value
        @Override
        public V getCurrentValue() throws IOException, InterruptedException {
            return this.value;
        }
​
        //重写方法,当前recordreader的进度,需要返回0-1中间的值
        //所以返回了当前位置和本块总的长度
        @Override
        public float getProgress() throws IOException, InterruptedException {
            return this.post/this.split.getLength();
        }
​
        //重写方法,关闭记录读取器--因此添加关闭连接的代码
        @Override
        public void close() throws IOException {
            MysqlInputFormat.this.closeConnection(this.conn,null,this.resultSet);
        }
​
    }
​
    //默认的空输出对象
    public class NullMysqlInputValue extends MysqlInputValue{
        @Override
        public void readFields(ResultSet rs) throws SQLException {}
        public void write(DataOutput out) throws IOException {}
        public void readFields(DataInput in) throws IOException {}
    }
​
​
    //继承InputSplit类,重写数据分块的方法
    //继承InputSplit的时候一定要同时实现序列化接口,否则会报错
    //使用内部类的时候序列化必须要static
    public static class MysqlInputSplit extends InputSplit implements Writable {
        private String[] emptyLocation = new String[0];
        private long start;//从第几行开始读数据(包含这一行)
        private long end;//读到第几行(不包含)
​
        @Override
        public long getLength() throws IOException, InterruptedException {
            //分片大小,就是读了几行数据
            return this.end-this.start;
        }
​
        @Override
        public String[] getLocations() throws IOException, InterruptedException {
            // 返回一个空的数组,表示不进行数据本地化的优化,那么map执行节点随机选择
            //虽然是随机选择但是Hadoop默认会使用同一节点执行计算
            return emptyLocation;
        }
​
        //重写序列化方法
        public void write(DataOutput out) throws IOException {
            out.writeLong(this.start);
            out.writeLong(this.end);
        }
        //重写反序列化方法
        public void readFields(DataInput in) throws IOException {
            this.start = in.readLong();
            this.end = in.readLong();
​
        }
​
        //下面是set/get和构造器
        public long getStart() {
            return start;
        }
​
        public void setStart(long start) {
            this.start = start;
        }
​
        public long getEnd() {
            return end;
        }
​
        public void setEnd(long end) {
            this.end = end;
        }
​
        public MysqlInputSplit() {
        }
​
        public MysqlInputSplit(long start, long end) {
            this.start = start;
            this.end = end;
        }
    }
}

 


 

 

 

 

MR输出格式概述

  • 数据输出格式(OutputFormat)

  • 用于描述MR作业的数据输出规范。

  • 输出格式作用:

    • 输出规范检查(如检查HDFS文件目录是否存在等)

    • 提供作业结果数据输出等功能。

  • 自定义输出格式需要实现:

    • 顶级输出格式类为:org.apache.hadoop.mapreduce.OutputFormat

    • 顶级数据写出类为:org.apache.hadoop.mapreduce.RecordWriter

Hadoop内置输出格式

  • Hadoop提供了大量的内置数据输出格式,包括:MapFileOutputFormat、SequenceFileOutputFormat、SequenceFileAsBinaryOutputFormat、TextOutputFormat等。最常用的是TextOutputFormat

  • TextOutputFormat是MR框架默认的数据输出格式。

    • 可以将计算结果以key+"\t"+value的形式逐行输出到文本文件中。

    • 当key或者value有一个为NullWritable或者为null的时候,当前为空的值不进行输出,只输出不为空的值。对应的数据输出类为LineRecordWriter(按行输出)。

    • 分隔符由参数mapreduce.output.textoutputformat.separator指定(默认是\t)

自定义MySQL输出格式

  • 自定义输出格式,我们需要继承OutputFormat和RecordWriter两个类,并重写以下方法:

    • 基本的作用和我们要重写的内容见下表。

    • 下表内容并不限定于MySQL中取数(就是从文件取数也要实现这些)

Hadoop(七):自定义输入输出格式_第2张图片

 

 

  • 自定义输出格式抽象类,和输入的类似,先定义一个输出到MySQL的抽象类

package com.rzp.ofdemo;
​
​
import org.apache.hadoop.io.Writable;
​
import java.sql.PreparedStatement;
import java.sql.SQLException;
​
/**
 * mysql定义的输出value顶级父类
 */
public abstract class MysqlOutputValue implements Writable {
​
    //获取数据库连接的sql语句
    public abstract String getInsertOrUpdateSql();
​
    //设置数据输出参数
    public abstract void setPreparedStatementParameters(PreparedStatement pstmt) throws SQLException;
​
}

 

  • 自定义输出格式

package com.rzp.ofdemo;
​
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
import org.apache.hadoop.mapreduce.*;
​
import org.apache.hadoop.conf.Configuration;
import java.io.IOException;
import java.sql.*;
import java.util.HashMap;
import java.util.Map;
​
​
/**
 * 自定义OutputFormat类,输出key/value到mysql数据库中
 * 要求key为NullWritable
 */public class MysqlOuputFormatextends MysqlOutputValue> extends OutputFormat {
    public static final String MYSQL_OUTPUT_DRIVER_KEY = "mysql.input.driver";
    public static final String MYSQL_OUTPUT_URL_KEY = "mysql.input.url";
    public static final String MYSQL_OUTPUT_USERNAME_KEY = "mysql.input.username";
    public static final String MYSQL_OUTPUT_PASSWORD_KEY = "mysql.input.password";
    public static final String MYSQL_OUTPUT_BATCH_SIZE_KEY = "mysql.input.batch.size";
    public MysqlOuputFormat() {
        super();
    }
​
    //重写方法,返回一个继承了RecordWriter的类
    @Override
    public RecordWriter getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {
        return new MysqlRecordWriter(context.getConfiguration());
    }
​
    //重写方法--检查输出路径是否规范
    //1.输出路径是否存在
    //2.输出路径下是否已经有了输出文件
    //我们输出到MySQL的表的情况下,只要检查链接是否正常即可
    @Override
    public void checkOutputSpecs(JobContext context) throws IOException, InterruptedException {
​
​
        Connection conn = null;
        try {
            conn = this.getConnection(context.getConfiguration());
​
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (SQLException e) {
            e.printStackTrace();
        }finally {
            this.closeConnection(conn,null,null);
        }
    }
​
​
    //Hadoop的事务,我们使用默认的FileOutputCommitter
    @Override
    public FileOutputCommitter getOutputCommitter(TaskAttemptContext context) throws IOException, InterruptedException {
        return new FileOutputCommitter(null,context);
    }
​
​
    //根据配置信息获取数据库链接
    private Connection getConnection(Configuration conf) throws ClassNotFoundException, SQLException {
        String driver = conf.get(MYSQL_OUTPUT_DRIVER_KEY);
        String url = conf.get(MYSQL_OUTPUT_URL_KEY);
        String username = conf.get(MYSQL_OUTPUT_USERNAME_KEY);
        String password = conf.get(MYSQL_OUTPUT_PASSWORD_KEY);
​
        Class.forName(driver);
        return DriverManager.getConnection(url,username,password);
    }
​
    //关闭连接
    private void closeConnection(Connection conn, Statement state, ResultSet rs){
        try {
            if (rs!=null)rs.close();
            if (state!=null)state.close();
            if (conn!=null)conn.close();
        } catch (SQLException e) {
            e.printStackTrace();
        }
    }
​
​
    //自定义的输出到Mysql的record writer类
    public class MysqlRecordWriter extends RecordWriter{
​
        private Connection conn = null;
        private Map pstmtCache = new HashMap ();
        private Map batchCache = new HashMap();
        private Configuration conf = null;
        private int batchSize = 100;  //每100行数据commit一次到数据库
​
​
        //因为每次一行一行写效率太低,我们使用prepareStatement的batch机制
        //和输入类似,会循环执行write方法
        @Override
        public void write(NullWritable key, V value) throws IOException, InterruptedException {
            if (this.conn==null){
                try {
                    this.conn = getConnection(conf);
                    this.conn.setAutoCommit(false); //取消自动提交
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
            String sql = value.getInsertOrUpdateSql();//获取Insert的sql
//注意sql一直都是“INSERT INTO stats_uv(url,date,uv) VALUES(?,?,?)”,所以一直都是一个key
            PreparedStatement pstmt = this.pstmtCache.get(sql);
            System.out.println(sql);
            System.out.println(pstmt==null);
            System.out.println(pstmt);
            if(pstmt==null){
                //创建pstmt对象并存入pstmtCache中
                try {
                    pstmt = this.conn.prepareStatement(sql);
                    this.pstmtCache.put(sql,pstmt);
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
            //计算这一Batch正在插入第几条数据,并放入到BatchCache中
            Integer count = this.batchCache.get(sql);
            if (count==null){
                count = 0;
            }
​
​
            //设置往数据库写入的值
            try {
                value.setPreparedStatementParameters(pstmt);
                count++;
                //数量超过100行就提交
                if (count>this.batchSize){
                    pstmt.executeBatch(); //进行批量执行
                    this.conn.commit();//提交
                    count = 0; //重置计数器
                }
                this.batchCache.put(sql,count); //修改计数器
                pstmt.addBatch(); //添加到batch,后续批量执行
            } catch (SQLException e) {
                e.printStackTrace();
            }
        }
​
        //关闭RecordWriter,把未提交的所有记录都提交
        @Override
        public void close(TaskAttemptContext context)  {
            if(this.conn!=null){
                for(Map.Entry entry :this.pstmtCache.entrySet()){
                    try {
                        entry.getValue().executeBatch();
                        this.conn.commit();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
​
        public MysqlRecordWriter() {
        }
        public MysqlRecordWriter(Configuration conf) {
            this.conf = conf;
            this.batchSize = this.conf.getInt(MYSQL_OUTPUT_BATCH_SIZE_KEY,this.batchSize);
        }
    }
​
}
​

 

测试

 

统计event_logs这个表中不同url的登录次数,相同uid和sid的只算一次,输出到另一个表中。

Hadoop(七):自定义输入输出格式_第3张图片

 

 

  • Mapper输入bean

package com.rzp.pojo;
​
import com.rzp.ifdemo.MysqlInputValue;
​
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.ResultSet;
import java.sql.SQLException;
​
//自定义输入value对象
public class UrlCountMapperInputValue extends MysqlInputValue {
    private String uid;
    private String sid;
    private String url;
    private long time;
​
    public void write(DataOutput out) throws IOException {
        out.writeUTF(this.uid);
        out.writeUTF(this.sid);
        out.writeUTF(this.url);
        out.writeLong(this.time);
    }
​
    public void readFields(DataInput in) throws IOException {
        this.uid = in.readUTF();
        this.sid = in.readUTF();
        this.url = in.readUTF();
        this.time = in.readLong();
​
    }
​
    @Override
    public void readFields(ResultSet rs) throws SQLException {
        this.uid = rs.getString("uid");
        this.sid = rs.getString("sid");
        this.url = rs.getString("url");
        this.time = rs.getLong("time");
    }
​
    public String getUid() {
        return uid;
    }
​
    public void setUid(String uid) {
        this.uid = uid;
    }
​
    public String getSid() {
        return sid;
    }
​
    public void setSid(String sid) {
        this.sid = sid;
    }
​
    public String getUrl() {
        return url;
    }
​
    public void setUrl(String url) {
        this.url = url;
    }
​
    public long getTime() {
        return time;
    }
​
    public void setTime(long time) {
        this.time = time;
    }
}

 


  • Mapper输出key bean,注意键值要重写Hashcode和equals方法

package com.rzp.pojo;
​
import com.google.common.base.Objects;
import org.apache.commons.lang.builder.EqualsBuilder;
import org.apache.commons.lang.builder.HashCodeBuilder;
import org.apache.hadoop.io.WritableComparable;
​
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
​
//自定义Mapper输出key
public class UrlCountMapperOutputKey implements WritableComparable {
    private String url;
    private String date; //yyyy-mm-dd
public void write(DataOutput out) throws IOException {
        out.writeUTF(this.url);
        out.writeUTF(this.date);
    }
​
    public void readFields(DataInput in) throws IOException {
        this.url = in.readUTF();
        this.date = in.readUTF();
    }
    public int compareTo(UrlCountMapperOutputKey o) {
        int tmp = this.url.compareTo(o.url);
        if(tmp!=0){
            return tmp;
        }
        return this.date.compareTo(o.date);
    }
​
    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
​
        UrlCountMapperOutputKey that = (UrlCountMapperOutputKey) o;
​
        if (!url.equals(that.url)) return false;
        return date.equals(that.date);
    }
​
    @Override
    public int hashCode() {
        int result = url.hashCode();
        result = 31 * result + date.hashCode();
        return result;
    }
​
    public String getUrl() {
        return url;
    }
​
    public void setUrl(String url) {
        this.url = url;
    }
​
    public String getDate() {
        return date;
    }
​
    public void setDate(String date) {
        this.date = date;
    }
}
​

 

  • Mapper输出value bean

package com.rzp.pojo;
​
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
​
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
​
//自定义Mapper输出key
public class UrlCountMapperOutputValue implements Writable {
​
    private String uid;
    private String sid;
    public void write(DataOutput out) throws IOException {
        if(this.uid==null){
            out.writeBoolean(false);
        }else {
            out.writeBoolean(true);
            out.writeUTF(this.uid);
        }
        if(this.sid==null){
            out.writeBoolean(false);
        }else {
            out.writeBoolean(true);
            out.writeUTF(this.sid);
        }
    }
​
    public void readFields(DataInput in) throws IOException {
        this.uid = in.readBoolean()?in.readUTF():null;
        this.sid = in.readBoolean()?in.readUTF():null;
    }
​
    public String getUid() {
        return uid;
    }
​
    public void setUid(String uid) {
        this.uid = uid;
    }
​
    public String getSid() {
        return sid;
    }
​
    public void setSid(String sid) {
        this.sid = sid;
    }
}
​

 

  • reduce输出value bean

package com.rzp.pojo;
​
import com.rzp.ofdemo.MysqlOutputValue;
import org.apache.hadoop.io.Writable;
​
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.SQLException;
​
​
//自定义reducer输出类
public class UrlCountReducerOutputValue extends MysqlOutputValue {
    private String url;
    private String date;
    private int uv;
    @Override
    public String getInsertOrUpdateSql() {
        return "INSERT INTO stats_uv(url,date,uv) VALUES(?,?,?)";
    }
​
    @Override
    public void setPreparedStatementParameters(PreparedStatement pstmt) throws SQLException {
        pstmt.setString(1, this.url);
        pstmt.setString(2, this.date);
        pstmt.setInt(3, this.uv);
    }
​
    public void write(DataOutput out) throws IOException {
​
        out.writeUTF(this.url);
        out.writeUTF(this.date);
        out.writeInt(this.uv);
    }
​
    public void readFields(DataInput in) throws IOException {
        this.url = in.readUTF();
        this.date = in.readUTF();
        this.uv = in.readInt();
​
    }
​
    public String getUrl() {
        return url;
    }
​
    public void setUrl(String url) {
        this.url = url;
    }
​
    public String getDate() {
        return date;
    }
​
    public void setDate(String date) {
        this.date = date;
    }
​
    public int getUv() {
        return uv;
    }
​
    public void setUv(int uv) {
        this.uv = uv;
    }
}
​

 

  • Mapper

package com.rzp.urlcount;
​
import com.rzp.pojo.UrlCountMapperInputValue;
import com.rzp.pojo.UrlCountMapperOutputKey;
import com.rzp.pojo.UrlCountMapperOutputValue;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Mapper;
​
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date;
import java.util.logging.SimpleFormatter;


/**
* 自定义数据输入/输出格式验证案例
* 计算uv值
*/
public class UrlCountMapper extends Mapper<LongWritable, UrlCountMapperInputValue, UrlCountMapperOutputKey, UrlCountMapperOutputValue> {
   private UrlCountMapperOutputKey outputKey =  new UrlCountMapperOutputKey();
   private UrlCountMapperOutputValue outputValue =  new UrlCountMapperOutputValue();
   private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
   private Calendar calendar = Calendar.getInstance();

   @Override
   protected void map(LongWritable key, UrlCountMapperInputValue value, Context context) throws IOException, InterruptedException {
       String url = value.getUrl();

       if(url!=null){
           calendar.setTimeInMillis(value.getTime()); //设置毫秒级时间
           long time = value.getTime();
           this.outputKey.setUrl(url);

           this.outputKey.setDate(this.sdf.format(calendar.getTime()));

           this.outputValue.setUid(value.getUid());
           this.outputValue.setSid(value.getSid());
           context.write(this.outputKey,this.outputValue);
      }
  }
}

 


  • Reduce

package com.rzp.urlcount;
​
import com.rzp.pojo.UrlCountMapperOutputKey;
import com.rzp.pojo.UrlCountMapperOutputValue;
import com.rzp.pojo.UrlCountReducerOutputValue;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
​
import java.io.IOException;
import java.util.HashSet;
import java.util.Set;
​
//计算uv的reducer类
public class UrlCountReducer extends Reducer {
​
    private UrlCountReducerOutputValue outputValue = new UrlCountReducerOutputValue();
    @Override
    protected void reduce(UrlCountMapperOutputKey key, Iterable values, Context context) throws IOException, InterruptedException {
​
        Set set = new HashSet();
        for (UrlCountMapperOutputValue value : values) {
            set.add(value.getSid());
        }
        int uv = set.size();
        this.outputValue.setUrl(key.getUrl());
        this.outputValue.setDate(key.getDate());
        this.outputValue.setUv(uv);
        context.write(NullWritable.get(),this.outputValue);
    }
}

 


  • runner

package com.rzp.service;
​
import com.rzp.ifdemo.MysqlInputFormat;
import com.rzp.ifdemo.MysqlInputValue;
import com.rzp.ofdemo.MysqlOuputFormat;
import com.rzp.pojo.UrlCountMapperInputValue;
import com.rzp.pojo.UrlCountMapperOutputKey;
import com.rzp.pojo.UrlCountMapperOutputValue;
import com.rzp.pojo.UrlCountReducerOutputValue;
import com.rzp.urlcount.UrlCountMapper;
import com.rzp.urlcount.UrlCountReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
​
import java.io.InputStream;
import java.io.OutputStream;
​
public class UrlCountRunner implements Tool {
    private Configuration conf = new Configuration();
​
    public void setConf(Configuration conf) {
        this.conf = conf;
        this.conf.set("mapreduce.framework.name","local");;
    }
​
    public Configuration getConf() {
        return this.conf;
    }
    public int run(String[] args) throws Exception {
        Configuration conf = this.getConf();
        Job job = Job.getInstance(conf,"test-format");
​
        job.setJarByClass(UrlCountRunner.class);
        //后面直接修改conf,可以直接传递到job中去
        conf = job.getConfiguration();
        //job设置
        conf.set(MysqlInputFormat.MYSQL_INPUT_DRIVER_KEY,"com.mysql.cj.jdbc.Driver");
        conf.set(MysqlInputFormat.MYSQL_INPUT_URL_KEY,"jdbc:mysql://localhost:3308/mybatis?useUnicode=true&characterEncoding=utf8&useSSL=true&serverTimezone=GMT%2B8");
        conf.set(MysqlInputFormat.MYSQL_INPUT_USERNAME_KEY,"root");
        conf.set(MysqlInputFormat.MYSQL_INPUT_PASSWORD_KEY,"mysql");
        conf.set(MysqlInputFormat.MYSQL_SELECT_KEY,"select count(1) from event_logs");
        conf.set(MysqlInputFormat.MYSQL_SELECT_RECORD_KEY,"select uid,sid,url,time from event_logs");
        conf.setLong(MysqlInputFormat.MYSQL_INPUT_SPLIT_KEY,5);
        conf.setClass(MysqlInputFormat.MYSQL_OUTPUT_VALUE_CLASS_KEY, UrlCountMapperInputValue.class,MysqlInputValue.class);
​
        job.setInputFormatClass(MysqlInputFormat.class);
​
        //设置mapper
        job.setMapperClass(UrlCountMapper.class);
        job.setMapOutputKeyClass(UrlCountMapperOutputKey.class);
        job.setMapOutputValueClass(UrlCountMapperOutputValue.class);
​
        //设置reducer
        job.setReducerClass(UrlCountReducer.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(UrlCountReducerOutputValue.class);
​
        //设置outputformat
        conf.set(MysqlOuputFormat.MYSQL_OUTPUT_DRIVER_KEY,"com.mysql.cj.jdbc.Driver");
        conf.set(MysqlOuputFormat.MYSQL_OUTPUT_URL_KEY,"jdbc:mysql://localhost:3308/mybatis?useUnicode=true&characterEncoding=utf8&useSSL=true&serverTimezone=GMT%2B8");
        conf.set(MysqlOuputFormat.MYSQL_OUTPUT_USERNAME_KEY,"root");
        conf.set(MysqlOuputFormat.MYSQL_OUTPUT_PASSWORD_KEY,"mysql");
        conf.setInt(MysqlOuputFormat.MYSQL_OUTPUT_BATCH_SIZE_KEY,10);
        job.setOutputFormatClass(MysqlOuputFormat.class);
        return job.waitForCompletion(true) ?0:1;
    }
​
    public static void main(String[] args) throws Exception {
        ToolRunner.run(new UrlCountRunner(),args);
    }
​
}
​

 

  • 输出结果

 Hadoop(七):自定义输入输出格式_第4张图片

 

你可能感兴趣的:(Hadoop(七):自定义输入输出格式)